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Abstract. We study dynamic matching policies in a stochastic marketplace for barter, with
agents arriving over time. Each agent is endowed with an item and is interested in an item
possessed by another agent homogeneously with probability p, independently for all pairs
of agents. Three settings are considered with respect to the types of allowed exchanges:
(a) only two-way cycles, in which two agents swap items, (b) two-way or three-way cycles,
(c) (unbounded) chains initiated by an agent who provides an item but expects nothing in
return.

We consider the average waiting time as a measure of efficiency and find that the cost
outweighs the benefit from waiting to thicken the market. In particular, in each of the
above settings, a policy that conducts exchanges in a greedy fashion is near optimal.
Further, for small p, we find that allowing three-way cycles greatly reduces the waiting
time over just two-way cycles, and conducting exchanges through a chain further reduces
the waiting time significantly. Thus, a centralized planner can achieve the smallest waiting
times by using a greedy policy, and by facilitating three-way cycles and chains, if possible.
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1. Introduction
Thousands of incompatible patient-donor pairs enroll
at kidney exchange clearinghouses every year around
the world in order to swap donors. Kidney exchange
is just one example of a marketplace in which agents
arrive and exchanges take place over time. Online plat-
forms that enable the exchange of goods (e.g., homes
for vacation, used goods, or services) and platforms
that allow users to findmatches (dating, labor, etc.) can
be viewed as dynamic marketplaces for exchanges.
Marketplaces for barter use different matching tech-

nologies in order to overcome the rare coincidence
of wants (Jevons 1876). For example, while kidney
exchanges were first conducted in two-way cycles
(Roth et al. 2005), most transplants in kidney exchange
are now conducted through chains initiated by altru-
istic donors (Anderson et al. 2015); see Figure 2. Some
three-way cycles are conducted, but cycles are kept
short because of logistical constraints. Chains, by con-
trast, can be longer, as each pair can receive a kidney
before it donates a kidney. In many marketplaces for
matching (such as dating), only bilateral matches take
place.

The policy employed by the clearinghouse, which
determines which exchanges to implement, and when,

also affects the efficiency of the marketplace. One natu-
ral policy is the greedy policy, where the clearinghouse
conducts exchanges immediately as the opportunity
arises. Alternatively, the clearinghouse can adopt a
batching policywhere it accumulates a number of agents
in order to thicken the market before it identifies a
set of exchanges to conduct. For example, clearing-
houses for kidney exchange in the United States have
gradually moved to small batches.1 More sophisticated
policies are also possible. This paper is concerned
with the effect matching policies have on efficiency of
dynamic marketplaces that enable different matching
technologies.

To illustrate the trade-off between serving agents
quickly and thickening the market, consider a mar-
ketplace in which only two-way cycles may be imple-
mented. Further, consider the situation depicted in Fig-
ure 1. Suppose agents a, c, and b arrive in that order,
and the potential two-way cycles are as in the figure.
Under a greedy policy, one of these possible exchanges
would immediately be executed, say (b , c). A different
policy P may not execute any exchange and when d
arrives it may implement exchanges (a , b) and (c , d), so
that all four agents are matched. On the other hand,
under a greedy policy, a and d remain unmatched
and will therefore wait for other agents to complete an
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Figure 1. Marketplace with Agents a, c, b, and d Arriving in
This Order

a b c d

Note. Waiting for agent d to arrive ensures that both (a , b) and (c , d)
make exchanges.

Figure 2. (Color online) A Compatibility-Graph
Representation of the Potential Trades in a Market

n1

a

n2 n3 n4

n5 n6 n7

Notes. Each circle node is an agent and the rectangle node, a, is an
“altruistic donor” who is willing to provide an item for free. A link
from agent ni to agent n j means that n j is willing to accept the good
that agent ni has. This graph contains a two-way cycle (n1→ n2→
n1), three-way cycles including (n2→ n3→ n5→ n2), and multiple
chains beginning from a including (a→ n1→ n2→ n3→ n4→ n7).

exchange, which may take a long time. Thus, with the
benefit of foresight, it is possible to do better than the
greedy policy. Without foresight, it is unclear whether
the clearinghouse should operate in a greedy fashion,
or adopt a more sophisticated policy.
We address the problem of efficient centralized

exchange by studying a stylized dynamic model. Each
period a single agent arrives with a single indivisi-
ble item that she wishes to exchange. Our model has
a homogeneous and independent stochastic demand
structure, in which every agent is willing to exchange
her item for any other agent’s item with probability
p; see Figure 2. Agents in our model prefer to match
as early as possible and are indifferent between alter-
nate feasible exchanges. We therefore adopt the aver-
age waiting time of agents as a measure of efficiency.
(In various contexts, it may be appropriate to consider
some other cost function that is nonlinear in the wait-
ing time. However, for this work we choose the simple
linear cost function.) Agents depart upon matching.

Exchanges are conducted through (directed) cycles,
or chains, and a policy determines which poten-
tial exchanges to conduct. We consider three set-
tings distinguished by the types of possible/allowed
exchanges: (i) two-way cycles, (ii) two-way and three-
way cycles, and (iii) unbounded chains.

Our main contributions are the following. First, we
find the greedy policy to be approximately optimal in
the first and third settings, and approximately optimal
in a class that includes batching policies in the sec-
ond setting. Second, we find that conducting greedy
exchanges through a chain (even a single one), results
in significantly lower waiting times than when only
two-way and three-way cycles are feasible, which in
turn results in significantly lower waiting times than
when only two-way cycles are feasible.

More precisely, we show that as p→ 0, the average
waiting time under the greedy policy scales asΘ(1/p2)
for the setting based on two-way cycles, as Θ(1/p3/2)
for the setting based on two-way and three-way cycles,
and as Θ(1/p) for the setting based on chains. Further-
more, these average waiting times are essentially opti-
mal in the first and third settings, and optimal in a class
that includes batching policies in the second setting.
We remark here that a small value of p is reasonable
in many practical contexts, since agents are often inter-
ested in only a small fraction of the items offered by
other agents. (For instance, kidney-exchange clearing-
houses see a substantial fraction of highly sensitized
patients who have a 1%–5% probability of matching.)
Our results imply that in each setting, for all p ∈ (0, 1),
the waiting time under the greedy policy is within
a constant factor of the waiting time using any other
batch size. Simulation experiments suggest that a batch
of size one is, in fact, truly optimal in each setting for
any p.

The near optimality of the greedy policy implies that
the cost outweighs the benefit from waiting to thicken
the market in our setting with ex ante homogeneous
agents. A very crude intuition for this is as follows.
Minimizing the expected waiting time is equivalent to
minimizing the expected number of agents who are
waiting. Given an exchange opportunity, the platform
should immediately execute the exchange, reducing
the number of agents waiting. In the worst case, the
served agents will soon be replaced by similar agents
who arrive next if the next arrivals do not match imme-
diately in turn; if the next arrivals do match imme-
diately, this will only further reduce the number of
agents waiting in the system. (Clearly, this reasoning is
grossly incomplete given that our agents are homoge-
neous only ex ante.)

The two-way cycles setting turns out to be the sim-
plest of the three settings considered; a short but non-
trivial analysis allows us to prove tight bounds for this
case. A simplifying feature of this case is that the state
of the system under the greedy policy is just the num-
ber of currently waiting agents. A key challenge in the
three-cycles and chains settings is that the compati-
bility graph between currently waiting agents, condi-
tional on running the greedy policy so far, is not a
directed Erdős–Rényi graph and has a complex distri-
bution. It is sparser in terms of compatibilities in a very
specific way: there are no possible exchanges, since the
greedy policy would already have executed them. We
develop methods to control the number of agents in
the system despite this complexity. Another contribu-
tion is the technique we develop to prove lower bounds
on average waiting times: this technique involves proof
by contradiction, and is used in the case of three cycles
and chains.
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1.1. Related Work
The first strand of research that is related to our work
is the literature that investigated efficiency in kidney
exchange. Roth et al. (2007) found that in a static large
pool, in which compatibilities are determined by blood
types, three-way exchanges increase the number of
matches but there is no need for exchanges of size 4
or larger. Ünver (2010) analyzes a dynamic kidney-
exchange model in which compatibilities are deter-
mined by blood types. He finds a myopic mechanism
that matches patient-donor pairs using only two-way
and three-way cycles to be optimal. The finite num-
ber of types together with deterministic compatibility
essentially creates a thick marketplace and therefore
Ünver’s results are closely related to the static large
market. However, as mentioned in the introduction,
most transplants are conducted through chains, which
Ashlagi et al. (2012) associate with the lack of thickness
in kidney exchange and the large percentage of highly
sensitized patients.
Closely related to our paper are the works by

Ashlagi et al. (2013) and Akbarpour et al. (2017) who
study dynamic matching markets with an underlying
stochastic network and preferences are based on com-
patibilities. Ashlagi et al. (2013) compare batching poli-
cies in a finite-horizon model with hard-to-match and
easy-to-match agents (motivated by empirical observa-
tions in kidney exchange pools), by counting the num-
ber of matches. They find a very small benefit from
small batches over greedy policies but find that chains
lead to many more matches than two-way or three-
way cycles. (Dickerson et al. 2012, also demonstrate the
benefit of chains, using simulations in dynamic kidney-
exchange pools.) When batches are large, more agents
can be matched, yet their model does not account for
thewaiting costs that comewith large batches. Another
difference is that hard-to-match agents in their model
match with a probability that is inversely proportional
to the pool size (here the pool size is the arrival rate
times the time horizon), whereas in our model compat-
ibility (or the probability of matching) is independent
of the pool size.

In a concurrent work, Akbarpour et al. (2017) study
a model similar to ours and focus on analyzing poli-
cies for two-way exchanges. Agents in their model can
depart and the goal of the clearinghouse is to mini-
mize the loss rate (the fraction of unmatched agents).
They study the benefits from knowing agents’ depar-
ture times, and find that one can benefit significantly
by making agents wait instead of matching agents
greedily. This particular conclusion is the opposite of
our own, driven directly by knowledge of departure
times by the clearinghouse (and nowaiting cost).When
agents’ departure times are unknown to the clearing-
house, Akbarpour et al. (2017) find the greedy pol-
icy to be almost optimal. We remark that this finding

is almost identical to our own for the case of two-
way cycles, due to a close relationship between their
model and our own, since in both formulations the
objective translates to minimizing the expected num-
ber of agents waiting; see Appendix EC.4 in the online
appendix. In fact, following the same analysis as in our
Theorem 1, we obtain a tighter result (Theorem EC.1
in the online appendix) than the bounds on the perfor-
mance of the greedy policy in Akbarpour et al. (2017,
Theorem 3.10).

Periodic matching has been studied in other (non-
barter) markets as well. Mendelson (1982) analyzes
a clearinghouse that periodically searches for out-
comes in a dynamic market with sellers and buy-
ers who arrive according to a stochastic process and
trade indivisible goods. He studies the behavior of
prices and quantities resulting from periodic trading.
Budish et al. (2015) find that some very small batch-
ing increases efficiency over continuous-time trading
in financial markets as firms compete over price rather
than over speed. These works study (in)efficiencies
resulting from prices, while our work focuses on the
waiting times in a homogeneous environment.

Another strand of research is the literature on
online matchingmotivated by online advertising. Karp
et al. (1990) initiated this line of research in an
adversarial setting for bilateral matchings, and recent
papers model the underlying compatibility graph to be
stochastic (Goel and Mehta 2008, Feldman et al. 2009,
Manshadi et al. 2012, Jaillet and Lu 2013). These studies
focus on who to match and not when to match.

Some papers in the queuing literature study mod-
els under which both customers and servers arrive
sequentially and have to match (Caldentey et al. 2009,
Adan and Weiss 2012). Agents in our model can be
viewed as both servers and customers and, in addition,
our compatibility graph is stochastic.

We now say a few words to situate our work from
a technical perspective. Our model and analysis bring
together the rich literature on (static) random graph
models, e.g., Bollobás (2001), Janson et al. (2011), and
the rich literature on queuing systems, e.g., Kleinrock
(1975), Asmussen (2003). In our model, the queue of
waiting agents has a graph structure (i.e., the compat-
ibility graph). Our stochastic model of compatibilities
mirrors the canonical Erdős–Rényi model of a directed
(static) random graph (but the dynamics make it much
more complex). Comparing with common models of
queueing systems, our system is peculiar in that the
queueing system does not contain “servers” per se.
Instead, the queue, in some sense, serves itself by exe-
cuting exchanges that the compatibility graph allows.
(Gurvich and Ward 2014, study optimal control in a
related setting where jobs—analagous to our agents—
can be served by matching with other compatible jobs.
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A key difference is that they consider a fixed num-
ber of job types, whereas in our setting compatibil-
ity is stochastically drawn for each pair of agents,
which leads to an unbounded number of possible agent
types.) Nodes form cycles or chains with other nodes.
Each time an exchange is executed, the corresponding
agents/nodes leave the system. As a result, it turns out
that for any reasonable policy the system is stable, irre-
spective of the rate of arrival of agents. If we speed up
the arrival rate of agents, the entire system speeds up
by the same factor, and waiting time reduces by the
same factor. Thus, without loss of generality we con-
sider an arrival rate of 1, with one agent arriving in
each time slot.
Finally, there is a large literature on trading in mar-

kets without monetary transfers in which agents are
endowedwith a single good, often referred to as “hous-
ing markets” (Shapley and Scarf 1974). In a hous-
ing market one considers a group of agents, each of
whom owns a house and has preferences over the
set of houses. Shapley and Scarf studied the core of
the market, and described the well-known top-trading
cycles algorithm, which finds an element in the core.
This literature has grown to be very mature, analyzing
core properties (e.g., Roth and Postlewaite 1977), incen-
tives, and design (e.g., Roth 1982, Abdulkadiroğlu and
Sönmez 1998, Pycia and Ünver 2017). Some applied
studies are Wang and Krishna (2006) on timeshare
exchanges (which allow people to trade a “week” of
vacation they own) and Dur and Ünver (2012) on
tuition exchange (which allows dependents of faculty
members to attend other colleges for no tuition). This
literature focuses on static marketplaces.

1.2. Notational Conventions
We conclude with a summary of the mathematical
notation used in the paper. Throughout,� (�+) denotes
the set of reals (nonnegative reals).Wewrite that f (p)�
O(g(p)), where p ∈ (0, 1], if there exists C <∞ such that
| f (p)| 6 Cg(p) for all p ∈ (0, 1]. We adapt the Θ( · ) and
Ω(·) notations analogously.Wewrite that f (p)� o(g(p))
where p ∈ (0, 1], if for any C > 0 there exists p0 > 0 such
that we have | f (p)| 6 Cg(p) for all p 6 p0. We adapt the
ω( · ) notation analogously.
We let Bernoulli(p), Geometric(p), and Bin(n , p)

denote a Bernoulli variable with mean p, a geomet-
ric variable with mean 1/p, and a binomial random
variable that is the sum of n independent identi-
cally distributed (i.i.d.) Bernoulli(p) random variables
(r.v.s). We write X d

� D when the random variable X
is distributed according to the distribution D. We let
ER(n , p) be a directed Erdős–Rényi random graph with
n nodes where every two nodes form a directed edge
with probability p, independently for all pairs. We let
ER(n ,M) be the closely related directed Erdős–Rényi
random graph with n nodes and M directed edges,

where the set of edges is selected uniformly at random
from all subsets of exactly M directed edges. The two
models are almost indistinguishable and, as is common
in the literature on random graphs (Janson et al. 2011),
we will use one model or the other depending on the
context. We let ER(nL , nR , p) denote a bipartite directed
Erdős–Rényi random graph with two sides. This graph
contains nL nodes on the left, nR nodes on the right, and
a directed edge between every pair of nodes containing
one node from each side is formed independently with
probability p. (Edges occur both from left to right, and
from right to left.) Given a Markov chain {Xt} defined
on a state space X and given a function f : X→ �, for
x ∈X , we use the shorthand

Ɛx[ f (Xt)] , Ɛ[ f (Xt) | X0 � x].

1.3. Organization
The rest of the paper is organized as follows. We
describe our model formally in Section 2 and state the
main results of the paper in Section 3. In Section 4, we
describe simulation results supporting our theoretical
findings.

We prove our main results for cycles of length two
only in Section 5.1, our results for two- and three-way
cycles (technically the most challenging) in Section 5.3,
and our results for chains in Section 5.2. Section 6
concludes.

2. Model
Consider the following infinite-horizon model of a
barter exchange where each agent arrives with an item
that she wants to exchange for another item. In each
period t � 0, 1, 2, . . . one new agent arrives to the mar-
ketplace.2 The item of the new agent v is of inter-
est to each of the waiting agents independently with
probability p and, independently, the new agent v
is interested in the item of each waiting agent inde-
pendently with probability p. Agents are indifferent
between compatible items and wish to exchange as
early as possible, their cost of waiting being propor-
tional to thewaiting time. Agents leave themarketplace
once they complete an exchange.

We study matching policies in three different set-
tings distinguished by how agents can exchange items.
In the first two settings (cyclic exchange) for each k �

2, 3, at most k agents can exchange items in a cyclic
fashion. In the third setting (chain) agents can exchange
items through a single chain: in the initial period t � 0,
a single altruistic donor arrives who is willing to give
her item away without getting anything in return. (In
all subsequent periods, regular agents arrive whowant
to exchange their item for another.) Each agent in the
chain receives a compatible item from one agent and
gives to another. The chain advances over time and
after each period there is exactly one agent who has
received an item but has yet to give her item. We refer
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to this agent as a bridge agent (note that at any time
there is exactly one bridge agent in the marketplace)
and we refer to the exchanges in a given time period as
a chain segment. A policy is a mapping from the history
of exchanges and the state of the marketplace to a set
of feasible exchanges involving nonoverlapping sets of
agents.
We adopt the average waiting time in steady state as

the measure of the efficiency of a policy (the waiting of
an agent is the difference between her departure time
and her arrival time). This is equivalent to maximiz-
ing the social welfare in our model when each agent
is given equal importance, since all agents have the
same linear cost of waiting. In our model, minimizing
the average waiting time is equivalent to minimizing
the average number of agents in the marketplace, since
these two quantities are proportional to each other by
Little’s law (Little 1961).
Remark 1. Our model, while simplistic in its compati-
bility structure (which is described by a single param-
eter p), has several advantages. It avoids a “market
size” parameter altogether (faster arrival of agents sim-
ply leads to an inverse rescaling of time).3 Further,
studying steady-state behavior allows performance to
be quantified exclusively in terms of waiting times. The
alternative approach of studying a finite time horizon,
as in Ashlagi et al. (2013), involves end-of-period effects
that make it necessary to simultaneously consider both
the waiting times and the number of matches, and thus
hinder performance comparisons.
Remark 2. We do not model agent departures due to
death/time-out. However, in our formulation, mini-
mizing waiting leads to minimizing the expected num-
ber of agentswaiting in the system by Little’s law (Little
1961) and hence aligns with minimizing the fraction of
agents who die without being served (if deaths occur).
See Appendix EC.4 in the online appendix for a formal
treatment.

It is convenient to think about a state of the mar-
ketplace at any time in terms of a compatibility graph,
which is a directed graph with each agent represented
by a node, and a directed edge (i , j) representing that
agent j wants the item of agent i. Let G(t)� (V (t),E(t))
denote the directed graph of compatibilities observed
before time t. When a new agent arrives, a directed
edge is formed (in each direction) with probability p
between the arriving agent v and each other agent
that currently exists in the system, independently for
all agents and directions. A cyclic exchange corre-
sponds to a directed cycle in G(t) and a chain seg-
ment is a directed path in G(t) starting from the bridge
node/agent.
One natural policy that will play a key role in our

results is the greedy policy. The greedy policy attempts
to match the maximum number of nodes upon each
arrival.

Definition 1 (Greedy Policy). The greedy policy for each
of the settings is defined as follows:

• Cycle Removal. At the beginning of each time
period the compatibility graph does not contain cycles
with length at most k. Upon the arrival of a new node,
if a cycle with length at most k can be formed with
the newly arrived node, it is removed, with a uni-
formly random cycle being chosen if multiple cycles
are formed. Clearly, at the beginning of the next time
period the compatibility graph again does not contain
any cycles with length at most k. The procedure is
described in Figure 4.

• Chain Removal. There is one bridge node in the
system at the beginning of every time period. This
bridge node does not have any incoming or outgoing
edges. Upon the arrival of a new node at the begin-
ning of a new time interval, the greedy policy identifies
the longest chain segment originating from the bridge
node (breaking ties uniformly at random) and removes
these nodes from the system and the last node in the
chain becomes a bridge node. Note that such a chain
has a positive length if and only if the bridge node has
a directed edge from it to the new node. Observe that
the new bridge node has indegree and outdegree zero,
and so the process can repeat itself. This procedure is
described in Figure 3.

In each of the settings, under the greedy policy the
state evolves as a Markov chain. Further, this Markov
chain is irreducible since an empty graph is reachable
from any other state. For Markov chains that are posi-
tive recurrent one can study the average waiting time.

Definition 2 (Periodic Markov Policies). We call a policy
a periodic Markov policy if it employs τ homogeneous
first-order Markov policies in round robin for some
τ ∈ �, and the market state is irreducible and positive
recurrent under the policy.4

In other words, a periodic Markov policy imple-
ments a heterogeneous first-order Markov chain,
where the transition matrices repeat cyclically every
τ rounds. The subsequence of states starting with the
state at time l and then including states at time inter-
vals of τ, i.e., times t � l , l + τ, l + 2τ, . . . forms an
irreducible and positive recurrent first-order Markov
chain. Call this the lth “outer” Markov chain. Without
loss of generality, thisMarkov chain is aperiodic. (If it is
periodic with period τ′, then redefine τ as per τ← ττ′,
and the outer Markov chains will now be aperiodic.) It
follows that the market state has a period of τ. Define

Wl ≡ Expected number of nodes in the system in the
steady state of the lth outer Markov chain.

Thus, Wl is the expected number of nodes in the system
at times that are l mod τ in steady state. Thenwe define
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Figure 3. (Color online) An Illustration of Chain Matching Under the Greedy Policy

w1

h h

w2 w3 w1 w1

a1 a1

w2

a2

w3 w3

Notes. Initially, as shown on the left, h is the head of the chain (the bridge agent), and nodes w1, w2, and w3 are waiting to be matched. First,
node a1 arrives, and his good is acceptable to both w1 and w3 but no one has a good acceptable to a1. As h’s good is not acceptable to a1, it is
not possible to advance the chain. Then node a2 arrives. His good is acceptable to w2 and he is able to accept the good from h. The longest
possible chain is shown above via dashed edges in the center. The chain is formed, h, a2, and w2 are removed, and w3 becomes the new head of
the chain (bridge agent). Edges incident to the matched nodes are removed, as well as edges going in to w3. Note that in this case, the longest
chain is not unique: w1 could have been selected instead of w3.

Figure 4. (Color online) An Illustration of Cycle Matching Under the Greedy Policy, with a Maximum Cycle Length of 3

n1 n2 n3 n4 n1 n1n2

n5 n5n6

n3 n3n4

Notes. Initially, as shown on the left, nodes n1, n2, n3, and n4 are all waiting. Node n5 arrives, but no directed cycles can be formed. Then n6
arrives, forming the three-way cycle n6→ n2→ n4→ n6. On the right, the three-way cycle is removed, along with the edges incident to any
node in the three-way cycle. Note that when n6 arrives, a six-way cycle is also formed; but under our assumptions, the maximum-length cycle
that can be removed is a three-way cycle.

the average waiting time for a periodic Markov policy
as

W �
1
τ

τ−1∑
l�0

Wl . (1)

Note that this is the average number of nodes in the
original system over a long horizon in steady state. By
Little’s law, this is identical to the average waiting time
for agents who arrive to the system in steady state,
which is our measure of efficiency.
Remark 3. We state our results formally for the broad
class of periodic Markov policies, though our bounds
extend also to other general policies that lead to a
stationary/periodic and ergodic system in the t→∞
limit.

3. Main Results
We consider three different settings: (a) bilateral
matches (two-way cycles), (b) two-way cycles and
three-way cycles, and (c) unbounded chains initiated
by altruistic donors. In each setting we look for a policy
that minimizes expected waiting time in steady state.

3.1. Bilateral Matching
Our first result considers the case in which agents can
exchange only through bilateral matches, i.e., through
two-way cycles.
Theorem 1. In the setting where only two-way cycles may
be executed, the greedy policy achieves an average waiting
time of ln2/p2 + o(1/p2). This is optimal, in the sense that
for every periodic Markov policy, the average waiting time is
at least ln2/(− ln(1− p2))� ln2/p2 + o(1/p2).

We provide some intuition regarding the optimality
of the greedy policy in this setting in the introduc-
tion. The scaling of 1/p2 follows from the fact that the
prior probability of having a two-way cycle between a
given pair of nodes is p2, and so an agent needsΘ(1/p2)
options in order to find another agent with whom a
mutual swap is desirable. This result is technically the
simplest to establish, but the insight obtained is never-
theless important. We prove Theorem 1 in Section 5.1,
using the fact that in steady state, the arrival rate must
match the departure rate and hence two-way cycles
must be removed at a rate of 1/2.

3.2. Two-Way Cycles and Three-Way Cycles
Our second result considers the case in which two-way
and three-way cycles are feasible.

Definition 3. A batching policy with batch size N waits
for N new arrivals, and then executes a set of feasible
exchanges that maximize the number of agents served
from among those currently waiting. The agents who
are not served become a part of the next batch.

Note that the greedy policy is a special case of batch-
ing with a batch size of 1.

Theorem 2. Under the cycle removal setting with k � 3, the
average waiting time under the greedy policy is O(1/p3/2).
Furthermore, there exists a constant C < ∞ such that, for
any batching policy, the average waiting time is at least
1/(Cp3/2).
Theorem 2 says that we can achieve a much smaller

waiting time with k � 3, i.e., two-way and three-way
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cycle removal, than the removal of two-way cycles only
(for small p), since 1/p3/2 is much smaller than 1/p2.
Further, for k � 3, the greedy policy is again near opti-
mal in the sense that no batching policy can beat the
greedy policy by more than a constant factor.
The following fact may provide some intuition for

the Θ(1/p3/2) scaling of average waiting time (recall
that the average number of nodes is the same as the
average waiting time, using Little’s law). In a static
directed Erdős–Rényi graph with (small) edge prob-
ability p, one needs the number of nodes n to grow
as Ω(1/p3/2) in order to cover, with high probability, a
fixed fraction (e.g., 50%) of the nodeswith node disjoint
two-way and three-way cycles.5 Our rigorous analysis
leading to Theorem 2 shows that this coarse calculation
in fact leads to the correct scaling of the average num-
ber of nodes in the dynamic system under the greedy
policy, and that no batching policy can do better.
We provide a partial sketch of the proof of The-

orem 2 in Section 5.3, deferring the full proof to
Appendix EC.2 in the online appendix. The proof over-
comes a multitude of technical challenges arising from
the complex distribution of the compatibility graph at
a given time, and introduces several new ideas. Our
lower bound in this case applies not just to batch-
ing policies but to the more general class of mono-
tone policies, which we define in Appendix EC.2 in the
online appendix. Roughly, under a monotone policy,
the presence of a compatibility (i , j) does not affect the
exchanges that are executed until either i or j is served.
An example of a nonmonotone policy is one that pri-

oritizes nodes that have a low indegree. However, we
remark that we could not construct any candidate pol-
icy in our homogeneous model of compatibility that
violates monotonicity but should do well in terms of
average waiting time. That being the case, we conjec-
ture (but are unable to prove) that our lower bound on
average waiting time applies to arbitrary and not just
monotone policies.

Our result leaves open the case of larger cycles, i.e.,
k > 3, under the greedy policy, arbitrary monotone
policies, and arbitrary general policies. Based on intu-
ition similar to the above, we conjecture that under the
cycle removal setting with general k, the greedy pol-
icy achieves an average waiting time ofΘ(p−k/(k−1)), and
furthermore for every policy the average waiting time
is lower bounded by Ω(p−k/(k−1)).

3.3. Unbounded Chains Initiated by
Altruistic Donors

Our final result concerns performance in the chain
removal setting.

Theorem 3. In the chain removal setting, the greedy pol-
icy (see Definition 1) achieves an average waiting time of
O(1/p). Further, there exists a constant C < ∞ such that
even if we allow the removal of cycles of arbitrary length

in addition to chains, for any periodic Markov policy (see
Definition 2) the average waiting time is at least6 1/(Cp).

Thus, unbounded chains initiated by altruistic
donors lead to a further large reduction in waiting time
relative to the case of two-way and three-way cycles, for
small p, since 1/p ismuch smaller than 1/p3/2. In fact, as
stated in the theorem, the removal of cycles of arbitrary
length (and chains), with any policy, cannot lead to
better scaling of waiting time than that achieved with
chains alone. Finally, the greedy policy is near optimal
among all periodic Markov policies for chain removal.
(In Remark 4, we argue that this should also hold in
the related setting where chains, two-way cycles, and
three-way cycles are all allowed.)

The intuition for the Θ(1/p) scaling of waiting time
is somewhat involved. Since an agent finds the item of
another agent acceptable with probability p, it is not
hard to argue that no policy can sustain an expected
waiting time that is o(1/p); see our proof of the lower
bound in Theorem 3 for a formalization of this intu-
ition. On the other hand, under a greedy policy, the
chain advances each time a new arrival can accept
the item of the bridge agent, which occurs typically at
Θ(1/p) intervals. Intuitively, if there are many agents
waiting, then, typically, the next time there is an oppor-
tunity to advance the chain, we should be able to
identify a long chain that will eliminate more agents
than the number of agents who arrived since the last
advancement. Our proof shows that this is indeed the
case.

The proof of Theorem 3 is technically challenging.
We provide a sketch of the proof in Section 5.2, and
defer the full proof to Appendix EC.3 in the online
appendix.

4. Computational Experiments
We conducted simulation experiments of our model
for each of the matching technologies (two-way cycles,
two- and three-way cycles, and chains). First, for each
of the matching technologies we calculated the aver-
age waiting time under a batching policy for a variety
of batch sizes. For each scenario, we simulated a time
horizon with 16,000 arriving nodes, and measured the
average number of nodes in the system after the arrival
of the 2,000th node (the first 2,000 arrivals serve as a
“warm-up” period). We conducted three trials for each
scenario simulated.

Figure 5(a) illustrates that when p � 0.1, the greedy
policy, which corresponds to the batching policy of the
batch size x � 1, performs the best among all simulated
batch sizes. In addition, observe the significant differ-
ence between averagewaiting times in the chain setting
on the one hand and the two-way cycles on the other
hand.7 Figures 5(b)–(d) provide similar results for the
cases of p � 0.08, 0.06, and 0.04. Moreover, under the
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Figure 5. (Color online) Average Waiting Time versus Batch Size Under Batching Policies for Two Way Cycle Removal, Two-
and Three-Way Cycle Removal, and Chain Removal

(a) p = 0.1 (b) p = 0.08

(c) p = 0.06 (d) p = 0.04
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greedy policy, for each p we simulated, the difference
between the average waiting time and the predicted
waiting time ln(2)/p2 was at most 1.3.
We conducted simulations of the greedy policy with

two-way and three-way cycles for p � 0.04. We ran the
system for 16,000 time steps, and recorded the total
number of nodes, the total number of edges, and the
number of nodes with each possible indegree and each
possible outdegree, after every 100 time steps, skip-
ping the first 2,000 steps (which should have allowed
the market to reach steady-state). Though our analysis
is not sufficiently fine-grained to capture it, our the-
oretical intuition suggests that the residual compati-
bility graph should have the same degree distribution
to a leading order as an Erdős–Rényi random graph
with the same edge probability. This intuition is con-
firmed as shown in Figure 6. For the purposes of this
figure, we consider only those snapshots of the sys-
tem in which the number of nodes was between 80
and 86, and compare the average indegree distribution
and outdegree distribution with those for an Erdős–
Rényi graph with 83 nodes and edge probability 0.04.
Similar results were obtained for other ranges of the
number of nodes. Further, we expect the number of
nodes to remain close to

√
ln(3/2)/p3/2 ≈ 79.6; see Con-

jecture 1. Consistentwith this estimate, our simulations
reveal an average number of nodes of 84.7 with a stan-
dard deviation of 7.3. An Erdős–Rényi random graph

is similarly found to provide a good approximation
in the chain setting, as well as the two-way cycle set-
ting, under a greedy policy with p � 0.04. We omit the
degree distribution charts in the interest of brevity. The
distribution of nodes in the system in the case of chains
is shown in Figure 7; the number of nodes varies in a
wider range in this case (since the chain advances in
bursts), but typically remains within a factor of 3 of the
average value. In the case of two-way cycles, we find
that the number of nodes remains close to ln(2)/p2 ≈
433.2, as predicted by Theorem 1 (we find a mean of
434.9 with a standard deviation of 22.9).
Based on the conjecture that the compatibility graph

closely resembles an Erdős–Rényi graph under the
greedy policy, we further conjecture that the greedy
policy is in fact near optimal in the case of two-
and three-way cycles (not just up to constant factors).
Our intuition mirrors the proof of optimality of the
greedy policy in the case of two-way cycles. First, recall
that two-way cycles play almost no role when three-
way cycles are permitted. In steady state, a three-way
cycle must be formed with probability at least 1/3 in
each period. The probability of formation of a three-
way cycle is uniquely determined by the number of
directed edges in the residual graph, and this in turn
is uniquely determined by the number of nodes if the
residual graph resembles an Erdős–Rényi graph. Now
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Figure 6. (Color online) Degree Distribution Under the Greedy Policy with Two-Way and Three-Way Cycles and p � 0.04
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Figure 7. (Color online) Distribution of the Number of
Nodes in the System Under the Greedy Policy with a Chain
and p � 0.04
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the greedy policy requires the probability of three-way
cycle formation to be exactly 1/3 in each period and
no larger, since it executes the three-way cycle imme-
diately. Hence, the greedy policy should be optimal
(at least among policies such that the residual graph
resembles an Erdős–Rényi graph in terms of average
degree).8
Finally, we briefly remark on the mixing time of the

Markov chain under the greedy policy. In amodel simi-
lar to our two-way cycle setting, Akbarpour et al. (2017)
show that their Markov chain mixes in a time that
is equivalent to O((1/p2) log(1/p)) in our parametriza-
tion. Though we do not study this formally, we believe
that in our two-way cycle setting under a greedy policy,
the Markov chain for even time steps (and also the one
for odd time steps) mixes in time of the same order, i.e.,
O((1/p2) log(1/p)). In particular, this is a small multi-
ple of the average waiting time, which is O(1/p2) in
that setting. We also believe that the Markov chains
under greedy for the two-way and three-way cycles
setting, and for the chains setting, each mix in a time
that is a small multiple of the average waiting time in
each case. Our numerical findings appear to suggest
that this holds, in that the degree distribution closely
resembles that of an Erdős–Rényi graph (after a short

initial period; see Figure 6), and the number of nodes
in the system returns often to each typical value. For-
mally proving such results would be quite involved in
these settings, however, since the state of the market is
the entire compatibility graph, as compared to just the
number of waiting nodes in Akbarpour et al. (2017).

5. Proof Ideas for the Main Results
In the following sectionswe give themain ideas behind
the proofs. The proof of Theorem 1 is relatively simple
and provided in its entirety in Section 5.1. All other
proofs are deferred to the appendices.

5.1. Bilateral Matching
In this section we consider the case in which exchanges
are done through two-way cycles only. We refer the
reader to the introduction for rough intuition regard-
ing the optimality of the greedy policy. Our proof fol-
lows a different argument based on the likelihood of
two-way cycle formation. We first sketch the proof of
Theorem 1, which provides tight bounds.

The lower bound is straightforward: in steady state,
any policy must remove a cycle at least once every
two periods on average, and so the rate of departures
matches the rate of arrivals. As a result, we must have
that an incoming node should form a two-way cycle
with some existing node with probability at least 1/2
on average. Note that the probability that the incoming
node forms a two-way cycle with a particular exist-
ing node is p2. Therefore the probability of forma-
tion of some two-way cycle is exactly 1 − (1 − p2)|V (t)| .
This immediately leads to a lower bound of log(2)/
(−(1 − p2)) � log(2)(1 + o(1))/p2 on the expected num-
ber of nodes in the system, under any policy in steady
state.

Now consider the greedy policy. The number of
nodes in the system under the greedy policy behaves
as a simple randomwalk with a downward step occur-
ring exactly when the new node forms a two-way cycle.
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Thus, the random walk has a negative drift when the
probability of the new node forming a cycle with an
existing node exceeds 1/2 by even a little. This ensures
that V (t) does not grow much beyond the minimum
level needed to ensure that new arrivals form two-way
cycles with a probability at least half, and so the perfor-
mance of the greedy policy closely matches the lower
bound.

Proof of Theorem 1. We first compute the expected
steady-state waiting time under the greedy policy.
Observe that for all t > 0,

|V (t+1)|�
{
|V (t)|+1 with probability (1− p2)|V (t)| ,
|V (t)| −1 with probability 1−(1− p2)|V (t)| .

Let ε > 0 be arbitrary. If |V (t)| > (1 + ε) ln(2)/p2, then
there exists a sufficiently small p � p(ε) such that for all
p > p(ε),

�(|V (t + 1)| � |V (t)| + 1)� (1− p2)|V (t)| 6 1
21+ε .

Let q � 1/21+ε < 1/2, and let Xt be a sequence of i.i.d.
random variables with distribution

Xt �

{
1 with probability q ,
−1 with probability 1− q.

Let S0 � 0 and for t > 1, St+1 � (St + Xt)+, and so St is a
birth-death process. Letting r � q/(1− q)< 1, in steady-
state �(S∞ � i)� r i(1− r) for i � 0, 1, . . . , and so

Ɛ[S∞]� r/(1− r)� q/(1− 2q)� 1
21+ε − 2 .

We can couple the random walk |V (t)| with St such
that |V (t)| 6 (1+ε) ln(2)/p2+St for all t. (When |V (t)| <
(1 + ε) ln(2)/p2, then we simply use the fact that the
number of nodes can increase by at most 1 per time
step. On the other hand, if |V (t)| > (1+ ε) ln(2)/p2 then
Xt stochastically dominates the step size |V (t + 1)| −
|V (t)| by construction.) This yields

Ɛ[|V (∞)|]6 (1+ ε) ln(2)
p2 +Ɛ[S∞]6 (1+ ε)

ln(2)
p2 +

1
21+ε −2 .

Thus for every ε > 0, we have

lim
p→0

Ɛ[|V (∞)|] − ln(2)/p2

1/p2 6 ε ln(2).

As ε is arbitrary, the result follows.
Now we establish the lower bound on |V (∞)|. Let

v be a newly arriving node at time t, and W be the
nodes currently in the system that are waiting to be
matched. Let I be the indicator that at the arrival time
of v (just before cycles are potentially deleted), no two-
way cycles between v and any node inW exist. Let Ĩ be

the indicator that at the arrival time of v, no two-way
cycles that will eventually be removed that are between
v and any node in W exist (in particular, Ĩ depends
on the future). Thus Ĩ > I a.s. Let Ṽt be the number of
vertices in the system before time t such that the cycle
that eventually removes them has not yet arrived. We
let Ṽ∞ be the distribution of Ṽt when the system begins
in steady state. By stationarity,

0� Ɛ[Ṽt+1 − Ṽt]� ƐṼ∞[2Ĩ − 1],

giving E[Ĩ] � 1/2. Intuitively, in steady state, the
expected change in the number of vertices not yet
“matched” must be zero. Thus we obtain

1
2 � Ɛ[Ĩ] > Ɛ[I]� Ɛ[Ɛ[I | |V (∞)]]

� Ɛ[(1− p2)|V (∞)|] > (1− p2)Ɛ[|V (∞)|] ,

by Jensen’s inequality. Taking logarithms on both sides
and rearranging terms, we get

Ɛ[|V (∞)|] >
log(1/2)

log(1− p2) �
log(2)

− log(1− p2) . �

5.2. Chain Removal
In this sectionwe provide themain ideas in the proof of
Theorem 3 (the formal proof is given in Appendix EC.3
in the online appendix). First we give the high-level
intuition. Recall that at any time period there is a single
bridge node in the marketplace and under the greedy
policy, the chain advances once the arriving agent can
accept the item of the bridge agent. The basic idea in
establishing that the greedy policy achieves an O(1/p)
average waiting time is to show that when there are
more than C/p nodes in the system, on average, the
next chain segment will contain more nodes than were
added in the interim. This “negative drift” in the num-
ber of nodes is crucial in establishing the bound (we
use a Lyapunov argument based on Proposition EC.2
in the online appendix to infer a bound on the expected
waiting time). The lower bound, proved by contradic-
tion, is based on the idea that the waiting time for a
node must be at least the time for the node to get an
indegree of one.
5.2.1. Sketch of Proof of the Upper Bound. To pro-
vide further intuition we first introduce the follow-
ing notation. Let the compatibility graph at time t be
G(t) � (V (t),E(t), h(t)). Here h(t) is a special node
not included in V (t) that is the bridge node, which
can form outgoing edges only. We denote by G(∞) �
(V (∞),E(∞), h(∞)) the steady-state version of this
graph (more precisely, it is a random variable drawn
from the steady-state distribution of G(t)).

According to the greedy policy, whenever h(t) forms
a directed edge to a newly arriving node, a largest pos-
sible chain segment starting from h(t) is executed. Note
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that h(t) has indegree and outdegree of zero from the
time it becomes a bridge node until it forms a directed
edge to the new arriving node. We refer to this period
between chain segments as an interval. Let τi for i �
1, 2, . . . , denote the length of the ith interval, and so
τi ∼ Geometric(p). Let T0 � 0 and Ti �

∑i
j�1 τ j for i �

1, 2, . . . , be the time at the end of the ith interval. Addi-
tionally, let Ai be the set of nodes that arrived during
the ith interval (Ti−1 ,Ti], in particular |Ai | � τi , and let
W i be the set of nodes that were “waiting” at the start
of the ith interval (excluding the bridge node), namely,
after time Ti−1. Thus, right before the chain is advanced,
every node in the graph is either in W i , Ai or it is h(t)
itself.
The idea of establishing the upper bound on the

average waiting time under the greedy policy is as fol-
lows. We use a Lyapunov function argument (using
Proposition EC.2 in the online appendix) to argue that
for some C, if there are at least C/p nodes in the graph
at the start of an interval (Ti ,Ti +τi+1], then the number
of nodes deleted in the subsequent chain segment is
on average greater than the number of nodes τi+1 that
arrive in the corresponding interval; i.e., we have a neg-
ative drift on the number of nodes. We lower bound
the number of nodes removed in the ith interval by the
length of a longest path starting from the bridge node
in the bipartite graph formed by one vertex set being
Ai (the newly arrived nodes) and the other vertex set
being W i along with the bridge node (the nodes wait-
ing after the previous chain segment), while retaining
only edges between the two vertex sets (in particular
those leading to a bipartite structure). We lower bound
the expected size of a longest path on this subgraph
(Corollary EC.3 in the online appendix).

Remark 4. We conjecture that the performance of a
greedy policy that executes two- and three-way cycles
in addition to chains will be almost identical to that of
a greedy policy with chains only, and, in particular, the
expected waiting time will still be O(1/p).

The reasoning is as follows. It is not hard to see that
the greedy policy that executes only chainsmisses two-
and three-way cycle opportunities for only an O(p)
fraction of nodes. Also, the lower bound in Theorem 3
means that the waiting time must be Ω(1/p), even if
some cycles are removed.

5.2.2. Sketch of Proof of the Lower Bound. The lower
bound in Theorem 3 is proved by contradiction, which
appears to be a novel approach. The waiting time for
a node must be at least the time for the node to get an
indegree of one. Using this, if the steady-state average
waiting time is W � o(1/p), then by Little’s law when
a typical node v arrives there are only o(1/p) nodes in
the system, and so v is likely not to have any incom-
ing edges connecting with any of these existing nodes.
After κW steps, the number of newly arrived nodes is

W � o(1/p), and so v is likely not to connect with any
of these nodes either. If we can show that v will be in
the system for more than κW steps with high enough
probability (i.e., with probability exceeding 1/κ), this
will contradict that the expected waiting time in steady
state is W . Our proof accomplishes this for κ � 3.

5.3. Two- and Three-Way Cycles
In this section we sketch the proof of Theorem 2. The
proof is far more involved than in the case of only two-
way cycles, especially the upper bound. The rigorous
proof is in Appendix EC.2 in the online appendix. We
also state a conjecture that would refine the result in
Theorem 2 in Section 5.3.3.
5.3.1. Sketch of the Proof of the Upper Bound. The
proof of the upper bound of O(1/p3/2) on waiting time
under the greedy policy relies on a delicate combina-
torial analysis of three-way cycles in the random graph
formed by nodes present in the system in steady state
and those arriving over a certain time interval. We con-
sider a time interval T � Θ(1/p3/2) and assume that
the system starts with at least order Θ(1/p3/2) nodes
in the underlying graph. We establish a negative drift
in the system and then, as in the case of chain removal,
rely on the Lyapunov function technique in order to
establish the required upper bound.

It is very difficult to control the distribution of the
residual compatibility graph under a greedy policy. In
particular, it is not an Erdős–Rényi random graph. For
instance, by definition of the greedy policy it does not
contain any two-way or three-way cycles. We do not
obtain any control on the edge distribution. Instead we
show a negative drift in the number of nodes in the
market, regardless of the existing set of edges between
the previously waiting nodes. In particular, the neg-
ative drift holds even in the intuitively “hard” case
where the starting graph contains no edges at all,
which is the case we focus on in this proof sketch.
Notice that there is no possibility of obtaining a neg-
ative drift with a single arrival, even if the number of
previously waiting nodes is a large constant multiple
of 1/p3/2. A three-way cycle cannot possibly be formed
(since there are no edges between existing nodes), and
the probability of forming a two-way cycle is O(p2 ·
1/p3/2) � O(p1/2) � o(1). In fact, it turns out that T �

Ω(1/p3/2) arrivals are needed to ensure a negative drift
when the starting graph contains no edges. Let W be
the set of previously waiting nodes and let A be the set
of new arrivals.

Consider a new arrival v ∈ A. Let us estimate the
probabilities of v forming a two-way or three-way cycle
with other nodes from among the previously waiting
nodes and new arrivals. First, note that the probabil-
ity of two-way cycle formation is O((T + 1/p3/2)p2) �
O(p1/2) � o(1) assuming T � O(1/p3/2). The probabil-
ity of three-way cycle formation involving only new
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arrivals is O(T2p3) (to form a three-way cycle with the
arriving node, two of the O(T) nodes are needed, as
well as three directed edges between these three nodes
to create a cycle). Moreover, the probability of three-
way cycle formation involving one other new arrival
and one previously waiting node is O(p3 · T · 1/p3/2) �
O(Tp3/2) � O(T2p3) for T � O(1/p3/2). Thus, the overall
probability of v being part of some two-way or three-
way cycle is O(T2p3)+ o(1). Any cycle that is removed
must involve at least two new arrivals, and removes
at most one previously waiting node. To obtain a neg-
ative drift, one must have that the expected number
of new arrivals that remain after T steps is less than
the expected number of previously waiting nodes that
are removed. In particular, each new arrival must be
removed with probability at least 2/3, implying that
T2p3 �Ω(1). Thus, we need T �Ω(1/p3/2) to have any
hope of obtaining a negative drift.
Tomake our proof work, we establish a negative drift

when |W | > C3p3/2 (there are many previously waiting
nodes in the market) by considering T � 1/(Cp3/2). By
choosing C large enough, we ensure that most of the
new arrivals are removed via a three-way cycle contain-
ing one previously waiting node and one new arrival,
under a greedy policy (call the number of such three-
way cycles N). As per our calculations above, two-way
cycles play a very small role. The probability that a
node in A is part of some three-way cycle involving
only new arrivals is only about 1/C2, which is small for
large C. Thus, only a few nodes in A leave via cycles
containing only other nodes in A; see event E2 in the
proof. On the other hand, each node is in expectation
part of at least C3/C � C2 cycles consisting of one node
inW and one other node inA. Performing a more care-
ful analysis, one can check that each new arrival should
be removed within a time of about 1/(C2p3/2) after
arrival. Thus, we expect about 1/(C3p3/2) new arrivals
to remain after T periods. In our proof we show that
this number is very unlikely to exceed 2/(C2p3/2), i.e., a
fraction 2/C of the arrivals A; see event E1 in the proof.
Most of the arrivals that were served by time T were
served as part of three-way cycles that involved a node
inW , with every two such nodes leading to a decrease
by at least one of the overall number of nodes in the
system between time 0 and time T. Thus, the over-
all number of nodes in the market is typically smaller
after T periods than it was at the beginning, for large
enough C.
5.3.2. Sketch of the Proof of the Lower Bound. For the
lower bound, we adopt a similar approach to the one
for chain removal. We prove by contradiction a match-
ing lower bound (up to constants) for batching poli-
cies. The rough idea is as follows: if the steady-state
expectedwaiting time is small (in this case smaller than
1/(Cp3/2) for appropriate C), then a typical new arrival
sees a small number of nodes currently in the system,

and so typically does not form a two- or three-way
cycle with previously waiting nodes or even the next
few arrivals. Thus, the typical arrival node has a long
waiting time, which contradicts our initial assumption
of a small expected waiting time.

5.3.3. A Conjecture That Would Refine Theorem 2.
The following characterization of the performance of
the greedy policy is obtained if we assume that nt con-
centrates, and that the typical number of edges in a
compatibility graph at time t with nt nodes is close to
what it would have been under an ER(nt , p) graph. (We
believe these assumptions are valid. We also believe
that the greedy policy is very close to optimal, this
being the second part of the statement below.)

Conjecture 1. For cycle removal with k � 3, the expected
waiting time in steady state under a greedy policy scales as√

ln(3/2)/p3/2 + o(1/p3/2), and no periodic Markov policy
(including nonbatching policies) can achieve an expected
waiting time that scales better than this.

Here the constant
√

ln(3/2) results from requiring
(under our assumptions) that a newly arrived node
forms a triangle with probability 1/3.
Our simulation results (see Figure 5 in Section 4) are

consistent with this conjecture: the predicted expected
waiting time for a greedy policy from the leading term√

ln(3/2)/p3/2 is W � 84.7 for p � 0.04, W � 47.1 for p �

0.06, W � 30.7 for p � 0.08, and W � 22.4 for p � 0.1. The
degree distribution observed in the residual compati-
bility is also very close to that of a directed Erdős–Rényi
graph; see Figure 6. If proved, this conjecture would
be a refinement of Theorem 2. A proof would require
a significantly more sophisticated analysis for both the
upper bound and the lower bound.

6. Conclusion
This paper was concerned with when a centralized
planner should match agents in a marketplace for
barter. In particular, we studied how centralized
matching policies, as well as matching technologies,
affect agents’ waiting times in a dynamic market with a
homogeneous stochastic demand structure. We found
the greedy policy to be approximately optimal when
either of two-way cycles, two- and three-way cycles,
or chains are feasible. Moreover, three-way cycles and
chains lead to a large improvement in waiting times
relative to two-way cycles only.

An important marketplace for barter is kidney ex-
change, which allows incompatible patient-donor pairs
to exchange donors. Exchanges in this market take
place over time and occur through two-way cycles,
three-way cycles, and chains. While our model is styl-
ized and abstracts away from many important details
in kidney exchange, our findings are consistent with
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computational experiments and practice (see End-
note 1 and Anderson et al. 2015).
While our approach is potentially applicable to

exchanges involving cycles longer than three, the tech-
nical details appear extremely challenging and we
leave the question of sharp characterization of perfor-
mance under four-way and longer exchanges for future
research.

We next discuss several implications of our work.
Consider first a setting in which multiple clearing-
houses compete with each other. When agents can
enroll in more than one clearinghouse, there is an
incentive for clearinghouses to complete exchanges
quickly to avoid agents completing an exchange in a
different clearinghouse. A priori one may worry that
this greedy-like behavior will harm social welfare, yet,
our findings suggests that this is not the case, as greedy
nearly optimizes agents’ average waiting time.

Our work has implications also for decentralized
marketplaces, where agents find their own exchanges.
Such marketplaces typically involve only bilateral
exchanges. (There are exceptions, such as multiway
swaps of players between teams in theNational Basket-
ball Association in the United States.) Our finding that
three-way cycles and chains can substantially reduce
waiting times suggests that in some contexts, switching
to a central matching authority may lead to substantial
gains in efficiency.

Our work is only a first step in analyzing dynamic
matching policies and leaves many questions open.
One natural question is whether the greedy pol-
icy remains optimal under other natural settings.
Akbarpour et al. (2017) allow agents to perish before
being matched and seek to minimize the loss rate. A
greedy policy is not optimal if the clearinghouse knows
the perishing times, but otherwise it is optimal (see
Appendix EC.4 in the online appendix where we estab-
lish a close connection between minimizing the loss
rate and minimizing the average waiting time). Allow-
ing for heterogeneous agents or goods can potentially
lead to different results. For example, if Bob is inter-
ested only in Alice’s item but there is no exchange in
which they both participate, it may be beneficial to
make Alice wait in hopes of finding an exchange that
can allow Bob to get Alice’s item. Thus, when chains
or cycles with at least three agents are permitted, some
waiting may improve efficiency in the presence of het-
erogeneity (some evidence for this is given by Ashlagi
et al. 2013). Allowing for preferences over compatible
matches, Baccara et al. (2015) have shown that a non-
greedy policy is optimal in a bipartite marketplace.
In kidney exchange, patient-donor pairs can roughly

be classified as easy to match and hard to match.
(Whether a pair is easy to match or not depends
on the blood types, the donor’s antigens, and the
patient’s antibodies.) Many hospitals internally match

their easy-to-match pairs, and enroll their harder-
to-match pairs in centralized multihospital clearing-
houses (Ashlagi and Roth 2014). An important ques-
tion is how much the waiting times of hard-to-match
pairs will improve as the percentage of easy-to-match
pairs grows.
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Endnotes
1The Alliance for Paired Donation moved from monthly to daily
matching, the National Kidney Registry now conducts daily matches
after experimenting with longer batches, and the United Network
for Organ Sharing have moved from monthly matching to weekly
matching.
2One can instead consider a stochastic model of arrivals, e.g., Poisson
arrivals in continuous time. In our setting, such stochasticity would
leave the behavior of the model essentially unchanged, and indeed,
each of our main results extend easily to the case of Poisson arrivals
at rate 1.
3Previous models involving stochastic compatibilities (Ashlagi et al.
2012, 2013) require p to scale in a particular way with “market size.”
4Formally, the sequence of states every τ periods (starting from
period l) forms a Markov chain, and we require that this Markov
chain is irreducible and positive recurrent. (This turns out not to
depend on l.)
5The expected total number of three-way cycles is nearly n3p3, and
the expected number of node disjoint three-way cycles is of the same
order for n3p3 . n. We need n3p3 ∼ n in order to cover a given fraction
of nodes with node disjoint three-way cycles, leading to n & 1/p3/2.
For n ∼ 1/p3/2, the number of two-way cycles is n2p2 ∼ 1/p � o(n); i.e.,
very few nodes are part of two-way cycles.
6The lower bound holds even for policies that allow a chain to be
implemented in a different fashion where agents first give an item
before they receive an item. Moreover, the lower bound holds even
if there is a constant number of coexisting chains. It is possible, how-
ever, to reduce agents’ average waiting time by having, for example,
a large number of chains in the system.
7We see that the difference between waiting times under chain
removal and cycle removal with k � 3 is less pronounced. One reason
for this could be that there are long intervals between consecutive
times when a chain can be advanced, leading to a poor constant fac-
tor for chain removal. Using nonmaximal chains may shorten these
intervals by retainingmultiple possible ways that the chain can grow
at any time, and this may improve the constant factor.
8This line of argument does not work in the case of chains. We are
unsure whether the greedy policy is truly optimal with chains, or
just optimal up to some constant factor.
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