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A Example supporting Section 3.2

We present an example showing that the bounds in Theorem 3 are tight.

Example 1. Suppose that there is one type of worker k and one type of employer q, i.e.,

K = Q = 1 and u(k, q) = 0. Fix arbitrary F that has a first moment and with density f

being positive and continuous everywhere. Suppose that ρk = 1/2, implying ρq = 1 − ρk = 1/2.

Then α∗ = 0 by symmetry, and the limiting core outcome is one in which workers with ηi > 0

match (worker i earns utility ηi), with employers with εj > 0 (employer j earns utility εj). The

expected number of workers with ηi > 0 is (1 − F (0))n/2 and this is also the expected number

of employers with εj > 0. However, in the n-th market, the number of workers with ηi > 0

deviates from its expectation by order
√
n, and similarly for the number of firms with εj > 0

and, furthermore, the difference between these two numbers is ∆ ∼
√
n. Core α’s are those that

lead to exactly the same number of workers with ηi − α > 0 as the number of employers with

εi+α > 0. Consequently, core α’s differ from α∗ = 0 by about ∆/(nf(0)) ∼ 1/
√
n (in particular,

E[|α|] = 1/
√
n for any core α), and the number of matched pairs scaled by n deviates by order

1/
√
n from its limiting value of 1/4, i.e., E[|N(1, 1)/n− 1/4|] = Θ(1/

√
n). The (expected) size

of the core is1 of order 1/n since all core α’s lie between the same pair of order statistics of ηj’s
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1Showing this rigorously requires a small (straightforward) argument to get around the dependence between

the realization of productivities, and the relevant order statistics.
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and −εi’s. (We use that F has a first moment to obtain that weight(M) = Θ(n) w.h.p.)

B Additional definitions and results on point processes in the

unit hypercube

B.1 Additional definitions

Analogously to the definitions of the regions in Section 4.1.1, we define the regions Rk(t) (for

appropriate k) and Rk1,k2(t, δ) (for appropriate k1, k2), which allow us to apply the conditions

(IR) and (ST) respectively. For consistency, the type t is suppressed in the definition of the

associated regions, sets, and random variables (e.g. Rk := Rk(t)). Let

Rk = {x ∈ [0, 1]K : xk ≥ xk′ ∀k′ 6= k, k′ ∈ K}. (1)

For k1, k2 ∈ K, k1 6= k2 and for δ ∈ [0, 1/2], define the region

Rk1,k2(δ) = {x ∈ [0, 1]K : xk1 ≥ xk ∀k /∈ {k1, k2}, k ∈ K, xk1 ≥ δ} . (2)

The relationship between these random regions and the α’s is more involved, so the expla-

nation is delayed to the proofs. However, and analogously to the case explained above, we still

care about the difference between (appropriately defined) consecutive order statistics in these

regions. To that end, we define

Vk = {x : x = εkj for {j : εj ∈ Rk}} (3)

and V k = max
(
Difference between consecutive values in Vk ∪ {0, 1}

)
(4)
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as well as

Vk1,k2(δ) = {x : x = εk1
j − ε

k2
j for {j : εj ∈ Rk1,k2(δ)}} (5)

and V k1,k2(δ) = max
(
Difference between consecutive values in Vk1,k2(δ) ∪ {−1 + δ, 1}

)
.

(6)

Thus, Vk ⊂ [0, 1] is the set of values of the k-th coordinate of the points lying in Rk, and

V k ∈ R is the maximum difference between consecutive values in Vk ∪ {0, 1}. Analogously,

Vk1,k2 ⊂ [−1 + δ, 1] is the set of values of the difference between the k1-th and k2-th coordinates

of points lying in Rk1,k2 , and V k1,k2 ∈ R is the maximum difference between consecutive values

in Vk1,k2 ∪ {−1 + δ, 1}.

Using the above notation, we now define two events that will help us prove the results by

providing us with a bound on the maximum difference between consecutive values in the relevant

regions. Specifically, the events are defined as follows:

B1(t, δ) =
{

max
(

max
k∈K

V k(t), max
(k1,k2)∈K(2)

V k1,k2(t, δ)
)
≤ f1(nt,K)

}
, (7)

for some f1(nt,K) = O∗(1/n
1/K
t ) defined in Lemma 1, δ ∈ [0, 1/2] and where K(2) = {(k1, k2) :

k1, k2 ∈ K, k1 6= k2}. (If K = 1, then K(2) is the empty set ∅ in which case we follow the

convention that max∅[ · ] = −∞.). In addition,

B2(t, δ) =
{

max
k∈TL

Ṽ k(t, δ) ≤ f2(nt)/δ
K−1

}
(8)

for some f2(nt) = O∗(1/nt) defined in Lemma 2, δ ∈ (0, 1] and Ṽ k(t, δ) as defined in Eq. (6).

The proof of all lemmas auxiliary to the proof of Theorem 1 assume that these events (or

some subset of them) occur. As shown by the next result, that assumption does not pose a

problem as these events simultaneously occur with high probability.

Theorem 1. There exists Ĉ = Ĉ(K,Q) < ∞ such that, for any δ = δ(n) ∈ (0, 1/2], the event⋂
t∈TL∪TE

(
B1(t, δ) ∩ B2(t, δ)

)
occurs with probability at least 1− Ĉ/n.

3



B.2 Results

Consider the K-dimensional unit hypercube [0, 1]K , and the Poisson process of uniform rate n

in this hypercube, leading to N points (εi)
N
i=1. (Note that E[N ] = n.) Here εi = (ε1i , ε

2
i , . . . , ε

K
i ).

Let K = {1, 2, . . . ,K} denote the set of dimension indices.

The following lemma, key to our proof of Theorem 1, says that with high probability, all

the (V k)’s and the (V k1,k2)’s are no larger than a (deterministic) function2 of n that scales as

O∗(1/n1/K).

Lemma 1. Let Rk be the region defined by Eq. (1), and let Vk and V k be as defined by Eqs. (3)

and (4) respectively. Similarly, let Rk1,k2(δ) be the region defined by Eq. (2), and let Vk1,k2(δ)

and V k1,k2(δ) be as defined by Eqs. (5) and (6) respectively. Fix K ≥ 1. Then there exists

f(n,K) = O∗(1/n1/K) such that for any δ = δ(n) ∈ [0, 1/2] the following holds. Let

B1 =

max

(
max
k∈K

V k, max
(k1,k2)∈K(2)

V k1,k2(δ)

)
≤ f(n,K)

 , (9)

where K(2) = {(k1, k2) : k1, k2 ∈ K, k1 6= k2}. (If K = 1, then K(2) is the empty set ∅ in which

case we follow the convention that max∅[ · ] = −∞.) We have

Pr(B1) ≥ 1− 1/n .

Proof. Let m = b1/(C log n/n)1/Kc for some C <∞ that we shall choose later, and let ∆ = 1/m.

Note that

∆ ≥ (C log n/n)1/K . (10)

In our analysis of V k (resp. V k1,k2), we shall divide the interval [0, 1] (resp. [−1 + δ, 1]) into

subintervals of size ∆ each, and show that with high probability, each subinterval contains at

least one value of εi ∈ Rk (resp. εk1
i − ε

k2
i for {i : εi ∈ Rk1,k2}). We shall find that the density

of points in Vk (resp. Vk1,k2) is smallest near 0 (resp. −1 + δ), but even for the interval [0,∆]

2In fact, our proof of Lemma 1 identifies a bound of (C logn/n)1/K where C = 6K(K − 1), for sufficiently
large n.
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(resp. [−1+δ,−1+δ+∆]), the number of points is Poisson with parameter Θ(n∆K) = Θ(log n),

allowing us to obtain the desired result for appropriately chosen C.

We first present our formal argument leading to a bound on V k, followed by a similar

argument leading to a bound on V k1,k2 . Let

Bk ≡
m−1⋂
i=0

{ [i∆, (i+ 1)∆] ∩ Vk 6= ∅ } , (11)

where ∅ is the empty set. Clearly, Bk 6= ∅ ⇒ V k ≤ 2∆. We now show that for any k ∈ K, we

have Pr
(
Bk
)
≤ 1/nK+2, for appropriately chosen C. Define

hj(x, θ) =


xj for x ∈ [θ, 1]

0 otherwise .
(12)

It is easy to see that Vk follows a Poisson process with density nhK−1( · , 0). The number of

points in interval [i∆, (i+ 1)∆] is hence Poisson with parameter

n

∫ (i+1)∆

i∆
hK−1(x) dx = ((i+ 1)K − iK)n∆K/K ≥ n∆K/K ≥ C log n/K ,

where we used the lower bound on ∆ in (10). It follows that

Pr([i∆, (i+ 1)∆] ∩ Vk = ∅) ≤ exp(−C log n/K) = 1/nC/K ≤ 1/n3 ,

for C ≥ 3K. We deduce by union bound over i = 0, 1, . . . ,m− 1 and De Morgan’s law on (11)

that

Pr
(
Bk
)
≤ m/n3 ≤ n1/K/n3 ≤ 1/n2 .

Using union bound over k we deduce that

Pr
(
∪k Bk

)
≤ K/n2 (13)
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We now present a similar argument to control V k1,k2 when K ≥ 2. Let m′ = (1− δ)/∆. (To

simplify notation we assume that m′ is an integer. The case where it is not an integer can be

easily handled as well.) Let

Bk1,k2 ≡
m−1⋂
i=−m′

{ [i∆, (i+ 1)∆] ∩ Vk1,k2 6= ∅ } , (14)

where ∅ is the empty set. Clearly, Bk1,k2 6= ∅ ⇒ V k1,k2 ≤ 2∆. We now show that for any

k1 6= k2, we have Pr
(
Bk1,k2

)
≤ K(K − 1)/n2, for appropriately chosen C. It is easy to see that

the two-dimensional projection (x, y) = (εk1
i , ε

k2
i ) of points in Rk1,k2 follows a two-dimensional

Poisson process with density hK−2(x)I(y ∈ [0, 1]), cf. (12). We deduce that values in Vk follow

a one-dimensional Poisson process with density ng for g = hK−2( · , δ) ∗ I(∈ [−1, 0]), where ∗ is

the convolution operator. A short calculation yields

g(x) =



[
(x+ 1)K−1 − δK−1

]
/(K − 1) for x ∈ [−1 + δ, 0)[

1− δK−1
]
/(K − 1) for x ∈ [0, δ)

(1− xK−1)/(K − 1) for x ∈ [δ, 1]

0 otherwise.

The number of points in interval [i∆, (i+ 1)∆] is Poisson with parameter

n

∫ (i+1)∆

i∆
g(x) dx .

Below we bound the value of this parameter for different cases on i, obtaining a bound of

(K + 3) log n in each case, for large enough C.

For −m′ ≤ i < 0, the smallest parameter occurs for i = −m′, since g(x) is monotone

increasing in [−1+δ, 0]. Thus, the Poisson parameter is lower bounded by its value for i = −m′,

which is

n
[(

(δ + ∆)K − δK
)
/K − δK−1∆

]
/(K − 1)

≥n∆K/(K(K − 1)) ≥ C log n/(K(K − 1)) ≥ 3 log n ,
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for C ≥ 3K(K − 1), using (10), and (δ + ∆)K ≥ ∆K +K∆δK−1 + δK .

For 0 ≤ i < m−m′, the Poisson parameter is

n
[
1− δK−1

]
∆/(K − 1) ≥ n∆/(2(K − 1)) ≥ n∆K/(K(K − 1)) ≥ 3 log n ,

using δ ≥ 1/2 and K ≥ 2.

For (m−m′) ≤ i < m, the Poisson parameter is

n(∆−∆K((1 + i)K − iK)/K)/(K − 1) .

A short calculation allows us to again bound this below by (K + 3) log n (the bound is slack for

K > 2). Note that

∆K((1 + i)K − iK) ≤ ∆K(mK − (m− 1)K) = 1− (1−∆)K

≤ K∆−K(K − 1)∆2/2 +K(K − 1)(K − 2)∆3/6 ,

where we used that (1 + i)K − iK is monotone increasing in i for i ≥ 0. Substituting back, we

obtain that the Poisson parameter is bounded by

n(1− (K − 2)∆/3)∆2/2 ≥ n∆2/4

for (K − 2)∆/3 ≤ 1/2, which occurs for sufficiently large n. Finally, ∆2 ≥ ∆K , and hence

n∆2/4 ≥ n∆K/4 ≥ 3 log n for C ≥ 12.

Choosing C = 6K(K − 1), in all cases the Poisson parameter is bounded below by 3 log n.

It follows that

Pr([i∆, (i+ 1)∆] ∩ Vk1,k2 = ∅) ≤ exp(−3 log n) = 1/n3 .
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We deduce by union bound over i and De Morgan’s law on (14) that

Pr
(
Bk1,k2

)
≤ 2m/n3 ≤ n1/K/n3 ≤ 1/n2 , (15)

for large enough n. Using union bound over (k1, k2) we deduce that

Pr
(
∪(k1,k2) Bk1,k2

)
≤ K(K − 1)/n2. (16)

Combining (15) and (16) by union bound and using De Morgan’s law, we deduce that

Pr
[(
∩k Bk

)
∩
(
∩(k1,k2) Bk1,k2

)]
≥ 1−K2/n2

for large enough n. This implies that for large enough n, with probability at least 1 −K2/n2

we have

max

(
max
k

V k,max
k1,k2

V k1,k2

)
≤ 2∆ ≤ 3(C log n/n)1/K = O∗(1/n1/K) ,

implying the main result for large enough n (note that K2/n2 < 1/n for large enough n). For

small values of n, we can simply choose f(n, k) large enough to ensure that the bound holds

with sufficient probability.

Lemma 2. For k ∈ K, let R̃k(δ), Ṽk(δ), and Ṽ k(δ) be as defined by Eqs. (4), (5), and (6)

respectively. Fix K ≥ 1. There exists f(n) = O∗(1/n) such that for any δ ∈ (0, 1], the following

occurs. Let

B2 ≡
{

max
k∈K

Ṽ k(δ) ≤ f(n)/δK−1

}
. (17)

Then

Pr(B2) ≥ 1− 1/n .

Proof. The values in the set Ṽk ⊂ [0, 1] follow a one-dimensional Poisson process with rate
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nδK−1. Choose f(n) = 6 log n/n. If 6 log n/(nδK−1) ≥ 1 there is nothing to prove, since

maxk∈K Ṽ
k(δ) ≤ 1 by definition. Hence assume 6 log n/(nδK−1) < 1. Divide [0, 1] into intervals

of length ∆ = f(n)/(3δK−1) = 3 log n/(nδK−1) (to simplify notation, we assume that 1/∆ ≥ 2

is an integer. The argument can easily be adapted to handle the case where nδK−1/(3 log n)

is not an integer). The probability that any particular interval of length ∆ does not contain

a point is no more than exp(−3 log n) = 1/n3. The number of intervals of length ∆ is 1/∆ =

nδK−1/(3 log n) ≤ n for large enough n. By union bound, with probability at least 1−1/n2, each

∆-interval contains at least one point, implying that Ṽ k(δ) ≤ 2∆ = f(n)/δK−1 with probability

at least 1− 1/n2, as required.

So far in this section we have considered the rate n Poisson process in [0, 1]K for convenience.

However, the results we have proved can easily be transported to the closely related model of n

points distributed i.i.d. uniformly in [0, 1]K .

Lemma 3. Consider n points distributed i.i.d. uniformly in [0, 1]K . Lemmas 1 and 2 hold for

this model as well.

Proof. We use a standard coupling argument along with monotonicity of the considered random

variables with respect to additional points. Let P be a rate n/2 Poisson process in [0, 1]K . The

N points are distributed i.i.d. uniformly in [0, 1]K conditioned on the value of N . Let B be

the event N ≤ n. Clearly, B occurs with probability at least 1 − 1/n2. Let U be the process

consisting of n points distributed i.i.d. in [0, 1]K . Conditioned on B, we can couple the process

P with the process U such that for every point in the Poisson process, there is an identically

located point in U .

We now show how to establish Lemma 2 for process U using such a coupling. Note that

maxk∈K Ṽ
k(δ) is monotone nonincreasing as we add more points. As such, an upper bound on

this quantity continues to hold if more points are added. For instance, consider maxk∈K Ṽ
k(δ).

Let B′ be the event that

max
k∈K

Ṽ k(δ) ≤ f(n/2)/δK−1
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under P. The proof of Lemma 2 shows that Pr(B′) ≥ 1 − (2/n)2. By union bound on B and

B′, we deduce that Pr(B ∩ B′) ≥ 1 − 5/n2 ≥ 1 − 1/n, for large enough n. We deduce, using a

coupling as described above, that with probability at least 1− 1/n, for process U we have

max
k∈K

Ṽ k(δ) ≤ f̃(n)/δK−1 ,

where f̃(n) = f(n/2), for large enough n. (For small values of n, we can simply choose f̃(n)

large enough to ensure that the bound holds with sufficient probability.) Thus we have shown

that Lemma 2 holds for process U .

Lemma 1 can similarly be established for process U using that

max

(
max
k∈K

V k, max
(k1,k2)∈K(2)

V k1,k2(δ)

)

is monotone nonincreasing as we add more points.

We now establish another result about n points (εj)
n
j=1 distributed i.i.d. uniformly in [0, 1]K .

This result is key to the proof of the tightness of Theorem 1 (Proposition 3).

For δ ∈ [0, 1] let

R̂k1,k2(δ) = {x ∈ [0, 1]K : xk1 ≥ xk2 − δ ; xk1 ≥ xk ∀k /∈ {k1, k2}, k ∈ K}. (18)

Let nk1,k2(δ) be the number of points in R̂k1,k2(δ).

Lemma 4. Let B3 be the event that there for all k1, k2 ∈ K we have nk1,k2 ≥ 1 + n/K. For

δ = δ(n) ≥ 1/n0.49, we have that B3 occurs with high probability.
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Proof. A short calculation shows that the volume of R̂k1,k2(δ) is

v =
1

K − 1

(
1− (1− δ)K

K

)
(19)

≥ 1

K
+

δ

K − 1
− δ2

2
(20)

≥ 1 + δ

K
(21)

for δ ≤ 2/(K(K − 1)). Now, the probability of εj ∈ R̂k1,k2(δ) is exactly v. It follows that nk1,k2

is distributed as Binomial(n, v). Notice E[nk1,k2 ] = nv ≥ n(1 + δ)/K. We obtain

Pr(nk1,k2 < 1 + n/K) ≤ exp
{
− Ω

(
nδ2
)}

= exp
{
− Ω

(
n0.02

)}
= o(1) (22)

using a standard Chernoff bound (see, e.g., Durrett 2010). Using union bound over pairs k1, k2

we deduce that B3 occurs with probability o(1); i.e., event B3 occurs with high probability.

We now prove Theorem 1.

Proof of Theorem 1. By invoking Lemma 1, Lemma 2, and Lemma 3, for each t we have that

w.p. at least 1− 2
nt

the event
(
B1(t, δ) ∩ B2(t, δ)

)
occurs. As the total number of types is upper-

bounded by K+Q, we apply a union bound to conclude that w.p. at least 1− 2(K+Q)
n∗ , the event⋂

t∈TL∪TE
(
B1(t, δ) ∩ B2(t, δ)

)
occurs, where n∗ = mint∈TL∪TE nt. Note that, by Assumption 2,

we have nt ≥ Cn for every type t ∈ TL∪TE and some constant C, which completes the proof.

C Proof of Theorem 1 (upper bound)

Proof of Proposition 1. The proposition follows immediately from stability.

Throughout the rest of the appendix, we shall use the following characterization of C.

Lemma 1 (Size of the core). Let M be the unique maximum-weight type-matching. Assume As-

sumption 2, fixed type-type compatibilities u(·, ·), idiosyncratic productivities being i.i.d. U(0, 1),

and that at least one u(·, ·) is greater than −2 (otherwise there will no matched agent pairs). For

each pair of types (k, q) ∈ T , let N(k, q) denote the number of matches between agents of type k
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and agents of type q. Then, with probability 1− 1/n, the size of the core C (cf. Definition 1) is

bounded as

C = Θ

(∑
k

∑
qN(k, q)|αmax

kq − αmin
kq |∑

k

∑
qN(k, q)

)
.

Proof. To prove this lemma, we need to show that the total number of matches
∑

k

∑
qN(k, q)

is within a constant factor of the social welfare with probability 1−1/n. The total social welfare

is bounded above by n(2 + maxu(·, ·)) = O(n) and the total number of matches is bounded

above by n. We shall show that both these quantities are also Ω(n) with probability 1 − 1/n,

which will then imply the lemma. Suppose that u(k, q) > −2. By Assumption 2, we know that

there are at least Cn agents each of type k and type q. Let δ = (u(k, q) + 2)/3. Let

Mk =Mk(δ) = {i ∈ k : ηqi ≥ 1− δ} , (23)

and similarly,

Mq =Mq(δ) = {j ∈ q : εkj ≥ 1− δ} . (24)

Clearly, one can find a matching (not necessarily a stable outcome) consisting of min(|Mk|, |Mq|)

pairs, each with one agent fromMk and the other agent fromMq. The weight of every edge/pair

in this matching is at least u(k, q) + 2(1− δ) = δ, and hence the total weight of the matching is

at least δmin(|Mk|, |Mq|). A standard Chernoff bound yields that |Mk| ≥ Cnmin(δ/2, 1) with

probability 1 − 1/n2, and similarly for |Mq|. It follows that the total weight of the matching

is at least Cnδmin(δ/2, 1) = Ω(n) with probability 1 − 1/n, as needed. Since stable outcomes

maximize social welfare it follows that the total social welfare is Ω(n) in stable outcomes.

It remains to bound the number of matches in stable outcomes. We claim that either all

agents inMk are matched or all agents inMq are matched. Otherwise, there is a blocking pair

consisting of an unmatched agent from each set. It follows that there are at least min(|Mk|, |Mq|)

matched agents in maximum-weight matching (the matching in all stable outcomes) and, in

particular, at least Cnδmin(δ/2, 1) = Ω(n) matched pairs under the lower bound obtained

above on |Mk| and |Mq|.
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The above characterization differs from the original definition (Definition 1) only in that the

size of the core is scaled by the number of matched agents instead of being scaled by the social

welfare. Lemma 1 allows us to bound C by controlling |αmax
kq − αmin

kq |.

We are now ready to present the complete proof of Theorem 1. Before moving on to the

key lemmas, we introduce some definitions. For every type t ∈ TL ∪ TE , we define ϑ(t) as

ϑ(t) = {k ∈ TL : N(k, t) > 0} when t ∈ TE and ϑ(t) = {q ∈ TE : N(t, q) > 0} when t ∈ TL.

That is, ϑ(t) is the set of neighbors of t in the graph G(M). Recall that, given a type t ∈ TL∪TE ,

we denote by D(t) the dimension of the idiosyncratic productivity vector associated with agents

of type t. That is, D(t) = K if t ∈ TE and D(t) = K if t ∈ TL.

Given a type t ∈ TL ∪ TE we denote by ν(t) (or simply ν) the points in t. That is, for each

agent j of type t, we define νj as follows:

νj =


εj if t ∈ TE

ηj if t ∈ TL.

For a fixed t ∈ TL ∪ TE and t′ ∈ ϑ(t), let βtt′ be defined as:

βtt′ =


−αtt′ if t ∈ TE

αtt′ − u(t, t′) if t ∈ TL.
(25)

Note that βtt′ can be interpreted as the price that agents of type t pay to match to type t′.

Using the above notation, we can rewrite the conditions in Proposition 2 associated with a

fixed type t ∈ TL ∪ TE as follows

(ST) For every k, k′ ∈ ϑ(t):

min
j∈t∩M(k)

νkj − νk
′
j ≥ βkt − βk′t ≥ max

j∈t∩M(k′)
νkj − νk

′
j .

(IM) For every k ∈ ϑ(t):

min
j∈t∩M(k)

νkj ≥ βkt ≥ max
j∈q∩U

νkj .
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As all the ν variables are in [0, 1], then the above conditions can be interpreted as geometric

conditions in the [0, 1]D(t)-hypercube.

Lemma 2. Consider the unique maximum-weight type-matching M and a type t ∈ TL ∪TE . Let

F1(t) be the event

F1(t) = {t is marked in G(M) and at least one agent in t is matched}; (26)

that is, t has at least one unmatched and one matched agent. Let the events B1(t, δ) and B2(t, δ)

be as defined by Eqs. (7) and (8) respectively. Under F1(t) ∩ B1(t, δ) ∩ B2(t, δ), we have

max
t′∈ϑ(t)

(
αmax
t,t′ − αmin

t,t′

)
≤ max

(
2f1(nt, D(t)) + δ, f2(nt)/δ

D(t)−1
)
,

where f1 and f2 agree with those in the definitions of events B1(t, δ) and B2(t, δ) respectively.

The proof of Lemma 2 is partitioned into two lemmas. Given a core solution (M,α), let the

event D(t, δ) be defined as

D(t, δ) = {βtz ≥ δ ∀z ∈ ϑ(t)}. (27)

We interpret D(t, δ) as the event that all prices seen by type t agents (weakly) exceed δ. Lemma 3

below deals with D(t, δ) whereas Lemma 4 deals with the complement D(t, δ). Together they

imply Lemma 2.

Lemma 3. Consider a core solution (M,α) and a type t. Let the events F1(t), D(t, δ), and

B2(t, δ) be as defined by Eqs. (26), (27), and (8) respectively. Under F1(t) ∩ D(t, δ) ∩ B2(t, δ),

we have maxt′∈ϑ(t)

(
αmax
t,t′ − αmin

t,t′

)
≤ f2(nt)/δ

D(t)−1, where f2 is as defined in the statement of

Lemma 2.

Proof. The intuition is that when all prices seen by type t agents (weakly) exceed δ, we can

individually bound the variation within the core of each price: for each type k ∈ ϑ(t) on the

other side, we consider agents of type t who are not interested in types other than k and bound

the gap between consecutive order statistics of νkj for such agents.
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Let D = D(t). Fix k ∈ ϑ(t) and consider the orthotope R̃k = R̃k(t, δ) as defined by

Eq. (4). As D(t, δ) occurs, βtz ≥ δ for all z ∈ ϑ(t) and therefore R̃k can contain only points

corresponding to agents in M(k) ∪ U . By using the notation introduced above, condition

(IM) in Proposition 2 implies that αmax
kt − αmin

kt ≤ minj∈t∩M(k) ν
k
j − maxj∈q∩U ν

k
j . However,

minj∈t∩M(k) ν
k
j −maxj∈q∩U ν

k
j ≤ minj∈R̃k∩M(k) ν

k
j −maxj∈R̃k∩U ν

k
j ≤ Ṽ k(t, δ), where Ṽ k(t, δ) is

as defined by Eq. (6). Therefore, for each k ∈ ϑ(t) we must have αmax
kt −αmin

kt ≤ Ṽ k(t, δ). Finally,

under B2(t, δ) we have maxk∈ϑ(t) Ṽ
k(t, δ) ≤ f2(nt)/δ

D−1, which completes the result.

Lemma 4. Consider a core solution (M,α) and a type t. Let F1(t) be the event defined in

Eq. (26). Let the event B1(t, δ) be as defined by Eq. (7), and let the event D(t, δ) denote

the complement of the event defined by Eq. (27). Under F1(t) ∩ D(t, δ) ∩ B1(t, δ), we have

maxt′∈ϑ(t)

(
αmax
t,t′ − αmin

t,t′

)
≤ 2f1(nt, D(t))+δ, where f1 is as defined in the statement of Lemma 1.

Proof. Here at least one price seen by type t is less than δ, since we are considering D(t, δ). The

first part of our proof controls the variation in the core of the price that is the smallest at α; we

call the corresponding type k∗. The second part of our proof controls relative variation in prices

faced by type t, and then uses the control on the price of type k∗ from the first part to control

prices of other types k 6= k∗.

Suppose that t ∈ TE . Consider the unit hypercube in RK . For each j ∈ E such that τ(j) = t,

let εj ∈ [0, 1]K denote the vector of realizations of εkj for every k ∈ TL. By condition (ST) in

Proposition 2, we can partition the [0, 1]K hypercube into |ϑ(t)| regions such that all the points

ε corresponding to agents matched to k ∈ ϑ(t) must be contained in the corresponding region

(these regions might also contain points corresponding to unmatched agents). In particular,

for each k ∈ ϑ(t), we define Z(k) ⊆ [0, 1]K to be the region corresponding to type k, with

Z(k) = ∩k′∈ϑ(t), k′ 6=k{x ∈ [0, 1]K : xk − xk′ ≥ αk′t−αkt}. Note that the region Z(k) can contain

only points corresponding to agents matched to k or unmatched.

Let k∗ = argmaxk∈TL{αtk : k ∈ ϑ(t)}, and let Rk∗ = Rk∗(t) be as defined by Eq. (1). By

condition (ST) in Proposition 2, we have that for all k ∈ ϑ(t),
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min
j∈t∩M(k∗)

εk
∗
j − εkj ≥ αkt − αk∗t ≥ max

j∈q∩M(k)
εk
∗
j − εkj .

As αkt−αk∗t ≤ 0 for all k ∈ ϑ(t), we must have Rk∗ ⊆ Z(k∗). Let V k∗ = V k∗(t) be as defined

in Eq. (4). We claim that αmax
k∗,t − αmin

k∗,t ≤ V k∗ . To see why this holds, consider two separate

cases. First, suppose that there is at least one point corresponding to an unmatched agent inRk∗ .

By condition (IM) in Proposition 2, we must have minj∈t∩M(k∗) ε
k∗
j ≥ −αk∗t ≥ maxj∈t∩U ε

k∗
j .

Hence, αmax
k∗,t − αmin

k∗,t ≤ minj∈t∩M(k∗) ε
k∗
j −maxj∈t∩U ε

k∗
j ≤ V k∗ , as desired. For the second case,

suppose that all points in Rk∗ correspond to matched agents. As maxj∈t∩U ε
k∗
j ≥ 0, we must

have αmax
k∗,t −αmin

k∗,t ≤ minj∈t∩M(k∗) ε
k∗
j ≤ minj∈Rk∗ εk

∗
j ≤ V k∗ , as the difference between 0 and the

minj∈Rk∗ εk
∗
j is upper-bounded by V k∗ . Therefore, we conclude that αmax

k∗,t − αmin
k∗,t ≤ V k∗ .

Next, we consider the bound for any arbitrary type k ∈ ϑ(t). By condition (ST) in Proposi-

tion 2, we have that for all k ∈ ϑ(t),

αmax
k∗t + min

j∈t∩M(k∗)
εk
∗
j − εkj ≥ αkt ≥ αmin

k∗t + max
j∈q∩M(k)

εk
∗
j − εkj .

Therefore,

αmax
kt − αmin

kt ≤ αmax
k∗t − αmin

k∗t + min
j∈t∩M(k∗)

(
εk
∗
j − εkj

)
− max
j∈q∩M(k)

(
εk
∗
j − εkj

)
.

From our previous bound, we have that αmax
k∗t −αmin

k∗t ≤ V k∗ . We now want an upper bound on

minj∈t∩M(k∗)(ε
k∗
j −εkj )−maxj∈q∩M(k)(ε

k∗
j −εkj ). LetRk∗,k = Rk∗,k(t, δ) and V k∗,k = V k∗,k(t) be as

defined by Eqs. (2) and (6). We shall show that minj∈t∩M(k∗)(ε
k∗
j −εkj )−maxj∈q∩M(k)(ε

k∗
j −εkj ) ≤

V k∗,k + δ. (Recall that, under D(t, δ), we have δ ≥ −αk∗t.)

Note that all points inRk∗,k must correspond to agents matched to k∗ or matched to k, as the

region Rk∗,k cannot contain unmatched agents without violating condition (IM). Furthermore,

as Rk∗ ⊆ Z(k∗) and Rk∗ ∩ Rk∗,k 6= ∅, at least one point in Rk∗,k corresponds to an agent

matched to k∗. We now consider two separate cases, depending on whether Rk∗,k contains at

least one point matched to k. First, suppose that Rk∗,k contains at least one point matched to
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k. Then, the bound trivially applies as

min
j∈t∩M(k∗)

εk
∗
j − εkj − max

j∈t∩M(k)
εk
∗
j − εkj ≤ min

j∈Rk∗,k∩M(k∗)
εk
∗
j − εkj − max

j∈Rk∗,k∩M(k)
εk
∗
j − εkj ≤ V k∗,k.

Otherwise, Rk∗,k contains only points matched to k∗. In that case,

min
j∈t∩M(k∗)

εk
∗
j − εkj − max

j∈q∩M(k)
εk
∗
j − εkj ≤ min

j∈Rk∗,k
εk
∗
j − εkj − (1 + αk∗t) ≤ V k∗,k + δ,

as desired. Overall, we have shown that:

max
k∈ϑ(t)

(
αmax
tk − αmin

tk

)
≤ max

(
V k∗ , max

k∈ϑ(t)

(
V k∗ + V k∗,k + δ

))
.

Under B1(t, δ) we have max
(
V k∗ ,maxk V

k∗,k
)
≤ f1(nt,K), implying

max

(
V k∗ , max

k∈ϑ(t)

(
V k∗ + V k∗,k + δ

))
≤ 2f1(nt,K) + δ,

as desired.

To conclude, we briefly discuss the changes when t ∈ TL. Consider the unit hypercube in

RQ. For each j ∈ L such that τ(j) = t, let ηj ∈ [0, 1]Q denote the vector of realizations of ηqj

for every q ∈ TE . For each q ∈ ϑ(t), we define Z(q) ⊆ [0, 1]Q to be the region corresponding to

type q. The main difference with the case in which t ∈ TE is that we need to define the regions

Z(q) in terms of η̃ instead of η. To that end, let βkq = αkq − u(k, q). By the (ST) condition in

Proposition 2, we must have:

min
i∈t∩M(q′)

η̃q
′

i − η̃
q
i ≥ αtq′ − αtq ≥ max

i∈t∩M(q)
η̃q
′

i − η̃
q
i ,

or equivalently,

min
i∈t∩M(q′)

ηq
′

i − η
q
i ≥ βtq′ − βtq ≥ max

i∈t∩M(q)
ηq
′

i − η
q
i .

By using β instead of α, the same geometric intuition as before applies. Then, we define

Z(q) = ∩q′∈ϑ(t), q′ 6=q{x ∈ [0, 1]Q : xq − xq′ ≥ βqt− βq′t}. To select q∗, we just select the one with
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smallest βqt. The rest of the proof remains the same.

Proof of Lemma 2. Lemma 2 immediately follows from Lemmas 3 and 4.

Lemma 5. Consider the unique maximum-weight type-matching M and a type t ∈ TL ∩TE . Let

F2(t) be the event

F2(t) = {all agents in t are matched}.

Let the event B1(t, δ) be as defined by Eq. (7). Under F2(t) ∩ B1(t, δ), for every t∗ ∈ ϑ(t) we

have maxt′∈ϑ(t)

(
αmax
t,t′ − αmin

t,t′

)
≤
(
αmax
t,t∗ − αmin

t,t∗

)
+ 2f1(nt, D(t)) + 2δ, where f1 agrees with the

one in the definition of B1(t, δ).

Proof. This proof is similar to the proof of Lemma 4. Consider a core solution (M,α). Let

D = D(t). Fix a type t∗ ∈ ϑ(t), and let k∗ = argmaxk∈ϑ(t)βtk. We start by showing that, under

F2(t)∩B1(t, δ), we must have αmax
tk∗ −αmin

tk∗ ≤
(
αmax
t,t∗ − αmin

t,t∗

)
+ f1(nt, D(t)) + 2δ. If k∗ = t∗, the

claim follows trivially. Otherwise, let Rk∗,t∗ = Rk∗,t∗(t, δ) and V k∗,t∗ = V k∗,t∗(t, δ) be as defined

by Eqs. (2) and (6). We show that minj∈t∩M(k∗) ν
k∗
j −νt

∗
j −maxj∈q∩M(t∗) ν

k∗
j −νt

∗
j ≤ V k∗,t∗+δ. To

that end, note that all points in Rk∗,t∗ must correspond to agents matched to k∗ or matched to

t∗, as under F2(t) all agents in t are matched. Furthermore, by the definition of k∗, Rk∗,t∗ must

contain a point corresponding to an agent matched to k∗. We now consider two separate cases,

depending on whether Rk∗,t∗ contains at least one point corresponding to an agent matched to

t∗. First, suppose that Rk∗,t∗ contains at least one point corresponding to an agent matched to

t∗. Then,

min
j∈t∩M(k∗)

νk
∗
j −νt

∗
j − max

j∈t∩M(t∗)
νk
∗
j −νt

∗
j ≤ min

j∈Rk∗,t∗∩M(k∗)
νk
∗
j −νt

∗
j − max

j∈Rk∗,t∗∩M(k)
νk
∗
j −νt

∗
j ≤ V k∗,t∗ .

Otherwise, Rk∗,t∗ contains only points matched to k∗. In that case,

min
j∈t∩M(k∗)

(νk
∗
j − νt

∗
j )− max

j∈t∩M(t∗)
(νk

∗
j − νt

∗
j ) ≤ min

j∈Rk∗,t∗
(νk

∗
j − νt

∗
j )− 1 ≤ V k∗,t∗ + δ,
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as desired. By condition (ST) in Proposition 2, we must have:

αmax
tk∗ −αmin

tk∗ ≤ αmax
tt∗ −αmin

tt∗ + min
j∈t∩M(k∗)

(νk
∗
j −νt

∗
j )− max

j∈t∩M(t∗)
(νk

∗
j −νt

∗
j ) ≤ αmax

tt∗ −αmin
tt∗ +V k∗,t∗+δ.

Next, consider an arbitrary k ∈ ϑ(t) with k 6= t∗, k∗. By condition (ST) in Proposition 2, we

must have

αmax
kt − αmin

kt ≤ αmax
k∗t − αmin

k∗t + min
j∈t∩M(k∗)

(νk
∗
j − νkj )− max

j∈q∩M(k)
(νk

∗
j − νkj ).

Let Rk∗,k = Rk∗,k(t, δ) and V k∗,k = V k∗,k(t) be as defined by Eqs. (2) and (6). By repeating

the same arguments as before, we can show that minj∈t∩M(k∗)(ν
k∗
j −νkj )−maxj∈q∩M(k)(ν

k∗
j −νkj ) ≤

V k∗,k + 2δ. Hence,

αmax
kt − αmin

kt ≤ αmax
k∗t − αmin

k∗t + V k∗,k + δ ≤ αmax
tt∗ − αmin

tt∗ + V k∗,t∗ + V k∗,k + 2δ.

To conclude, note that

max
k∈ϑ(t)

(
αmax
kt − αmin

kt

)
≤
(
αmax
tt∗ − αmin

tt∗

)
+2

(
max
k∈ϑ(t)

V k∗,k

)
+2δ ≤

(
αmax
tt∗ − αmin

tt∗

)
+2f1(nt, D)+2δ,

where the last inequality follows from the fact that B1(t, δ) occurs by hypothesis.

We can now proceed to the proof of the main theorem.

Proof of Theorem 1 (upper bound). Let n∗ = mint∈TL∪TE nt. Under Assumption 2, we have

that n∗ = Θ(n). Let δ = 1/(n∗)1/max(K,Q). For each t ∈ TL ∪ TE , let the events B1(t, δ)

and B2(t, δ) be as defined by Eqs. (7) and (8) respectively. We start by showing that, under⋂
t∈TL∪TE

(
B1(t, δ) ∩ B2(t, δ)

)
, we must have C ≤ O∗

(
1/n1/max(K,Q)

)
. To that end, construct

the type-adjacency graph G(M) as defined in Section 4. For each vertex v, we denote by d(v) the

minimum distance between v and any marked vertex (that is, d(v) = 0 if v is marked, d(v) = 1

if v is unmarked and has a marked neighbour, and so on). By Lemma 1, we know that w.p. 1,

each connected component of G(M) must contain at least one marked vertex, and so d(v) is well

19



defined for all v. Let Cd = {v ∈ C : d(v) = d}; that is, Cd is the set of vertices that are at distance

d from a marked vertex. We now show the result by induction in d. In particular, we show that,

under
⋂
t∈TL∪TE

(
B1(t, δ) ∩ B2(t, δ)

)
, for each t ∈ Cd we have that maxk∈ϑ(t)

(
αmax
tk − αmin

tk

)
≤

gd(n
∗,max(K,Q)) for some gd(n

∗,max(K,Q)) = O∗(1/n1/max(K,Q)).

We start by showing that the claim holds for the base case d = 0. For each t ∈ C0, either

all agents in t are unmatched or at least one agent is matched. In the former case, we can just

ignore type t as it will not contribute to the size of the core. In the latter, we note that w.p.

1 the event F1(t) as defined in the statement of Lemma 2 must hold. Therefore, we can apply

Lemma 2 to obtain maxt′∈ϑ(t)

(
αmax
t,t′ − αmin

t,t′

)
≤ max

(
2f1(nt, D(t)) + δ, f2(nt)/δ

D(t)−1
)

, where

f1 and f2 are as defined in the statement of the lemma. To conclude the proof of the base case,

let

g0(n∗,max(K,Q)) = max
(

2f1(n∗,max(K,Q)) + δ, f2(n∗)/δmax(K,Q)−1
)
.

By the definition of f1, f2, and δ, together with Assumption 2, we have g0(n∗,max(K,Q)) =

O∗(1/n1/max(K,Q)). Therefore, we have shown that, for every t ∈ C0, we have

max
k∈ϑ(t)

(
αmax
tk − αmin

tk

)
≤ g0(n∗,max(K,Q)).

Now suppose that the result holds for all d′ ≤ d; we want to show that it holds for d+ 1. Fix

t ∈ Cd+1. By the definition of Cd+1, we have that all agents in t must be matched and therefore,

w.p. 1, the event F2(t) as defined in the statement of Lemma 5 occurs. Moreover, there must

exist a t∗ such that the vertex corresponding to t∗ is Cd and t∗ ∈ ϑ(t). By induction, we have

that
(
αmax
tt∗ − αmin

tt∗

)
≤ gd(n∗,max(K,Q)) for gd(n

∗,max(K,Q)) = O∗(1/n1/max(K,Q)). Further-

more, by Lemma 5, we know that under F2(t) ∩ B1(t, δ), we have maxt′∈ϑ(t)

(
αmax
t,t′ − αmin

t,t′

)
≤(

αmax
t,t∗ − αmin

t,t∗

)
+ 2f1(nt, D(t)) + 2δ, where B1(t, δ) is as defined by Eq. (9) and f is as defined

in the statement of Lemma 1. Therefore, by letting gd+1(n∗,max(K,Q)) = gd(n
∗,max(K,Q)) +

2f1(n∗,max(K,Q)) + 2δ, we have shown that with probability at least 1− d+1
n∗ , we have

max
k∈ϑ(t)

(
αmax
tk − αmin

tk

)
≤ gd+1(n∗,max(K,Q)) ,
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with gd+1(n∗,max(K,Q)) = O∗(1/n1/max(K,Q)).

Next, we note that maxv d(v) is upper-bounded by K + Q. Hence, for every t ∈ TL ∪

TE , we have maxk∈ϑ(t)

(
αmax
tk − αmin

tk

)
≤ gK+Q(n∗,max(K,Q)) for gK+Q(n∗,max(K,Q)) =

O∗(1/n1/max(K,Q)) and, therefore,

max
t∈TL∪TE

max
k∈ϑ(t)

(
αmax
tk − αmin

tk

)
≤ gK+Q(n∗,max(K,Q)).

To conclude, by Theorem 1 we have that with probability at least 1 − 2(K+Q)
n∗ , the event⋂

t∈TL∪TE
(
B1(t, δ) ∩ B2(t, δ)

)
occurs. In all other cases, we just use the fact that the size of the

core is upper-bounded by a constant C <∞. Hence,

E[C] =

∑
(k,q)∈TL×TE N(k, q)

(
αmax
kq − αmin

kq

)
∑

(k,q)∈TL×TE N(k, q)

≤ (K +Q)gK+Q(n∗,max(K,Q)) + C
2(K +Q)

n∗

= O∗
(

1
max(K,Q)

√
n

)

implying the main result for large enough n (note that 2(K+Q)
n∗ = Θ∗(1/n)).

D Theorem 1 (lower bound): Proof of Proposition 3

Again, we make use of the characterization of C in Lemma 1.

Proof of Proposition 3. We consider the sequence of markets described in Section 4.2. We re-

mark that the gaps in values of n in the described sequence can easily be filled in, leaving the

core and its size essentially unaffected.3

Claim 1. For this market, all labor agents of types different from k∗ will be matched in the core.

Proof. We know that there is some employer j who is either unmatched or matched to a labor

agent i′ of type k∗. Consider any matching where a labor agent i of type k 6= k∗ is unmatched.

3In the described construction, we have n = (2K − 1)ñ + 1 for ñ = 1, 2, . . ., but intermediate values of n can
be handled by having slightly fewer workers of type k∗, which leaves our analysis essentially unaffected.
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Now Φ(i′, j) = εi′ + ηk∗j ≤ 1 + 1 = 2, whereas Φ(i, j) ≥ u(k, 1) = 3, and hence the weight of such

a matching can be increased by instead matching j to i. It follows that in any maximum-weight

matching, all labor agents of a type different from k∗ are matched. Finally, recall that every

core outcome lives on a maximum-weight matching; cf. Proposition 2.

Among agents i ∈ k∗, exactly one agent will be matched, specifically agent i∗ = arg maxi∈k∗ ηi.

Let j∗ be the agent matched to i∗ (break ties arbitrarily). Recall that core solutions always live

on a maximum-weight matching, and in case of multiple maximum-weight matchings, the set

of vectors α such that (M,α) is a core solution is the same for any maximum-weight matching

M . This allows us to suppress the matching, and talk about a vector α being in the core; cf.

Proposition 2. The (IR) conditions in Proposition 2 for the pair of types (k∗, 1) are

ηi∗ ≥ αk∗ ≥ max
i∈k∗\i∗

ηi , (28)

and the slack condition αk∗ ≥ −ε
k∗
j∗

. The (IM) conditions for types (k, 1) for k 6= k∗ are

3 + min
i∈k

ηi ≥ αk ≥ − min
j∈M(k)

εkj . (29)

The stability conditions are

min
j∈M(k)

εkj − εk
′
j ≥ αk′ − αk ≥ max

j∈M(k′)
εkj − εk

′
j , (30)

for all k 6= k′. It is easy to see that Eq. (30) with k′ = k∗ implies that αk ≤ 2 for all k 6= k∗.

Hence, the upper bound in Eq. (29) is slack. Consider the left stability inequality with k′ = k∗.

As Eq. (28) implies that αk∗ ≥ 0, we must have

αk ≥ − min
j∈M(k)

εkj − ε
k∗
j ≥ − min

j∈M(k)
εkj

implying that the lower bound in (29) is also slack. Thus a vector α is in the core if and only if

conditions (28) and (30) are satisfied.

For simplicity, we start with the special case of K = 2, with the two types of labor being k
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and k∗. To obtain intuition, notice that from Eq. (28) we have αk∗
ñ→∞−−−→ 1 in probability, and

when we use this together with Eq. (30) we obtain αk
ñ→∞−−−→ 2 in probability. (We do not use

these limits in our formal analysis below.) Hence, we focus on Eq. (28) together with

min
j 6=j∗

εkj − ε
k∗
j ≥ αk∗ − αk ≥ ε

k
j∗ − ε

k∗
j∗
, (31)

where j∗ = arg minj ε
k
j − ε

k∗
j . Now, Xj = εkj − ε

k∗
j are distributed i.i.d. with density U [0, 1] ∗

U [−1, 0], which is

f(x) =


1− |x| for |x| ≤ 1

0 otherwise.
(32)

(Note that if we draw ñ+1 samples from this distribution, it is not hard to see that E[(minj 6=j∗ Xj)−

Xj∗ ] = Θ(1/
√
ñ).) We lower bound the expected core size as follows. Let Xj = εkj − εk∗j .

Let B be the event that exactly one of the Xj ’s is in [−1,−1 + 1/
√
ñ], and no Xj is in

[−1 + 1/
√
ñ,−1 + 2/

√
ñ]. Under f the probability of being in [−1,−1 + 1/

√
ñ] is 1/(2ñ) and

the probability of being in [−1 + 1/
√
ñ,−1 + 2/

√
ñ] is 3/(2ñ). It follows that

Pr(B) =

(
ñ+ 1

1, 0, ñ

)
1

2ñ

(
1− 2/ñ

)ñ
= Ω(1) . (33)

Claim 2. Consider the case of K = 2. Under event B, for any core vector (αk∗ , αk), for any

value α′k ∈ [αk∗ + 1 − 2/
√
ñ, αk∗ + 1 − 1/

√
ñ], we have that vector (αk∗ , α

′
k) is in the core. In

particular, C = Ω(1/
√
ñ).

Proof. Eq. (31) is satisfied since event B holds. Since, αk′ can take any value in an interval of

length 1/
√
ñ, it follows that C = Ω(1/

√
ñ) under B.

Combining Claim 2 with Eq. (33), we obtain that E[C] = Ω(1/
√
ñ), as desired.

We now construct a similar argument for K > 2, with K = TL\{k∗} being the other labor

types, all of whose agents are matched. It again turns out that αk∗
ñ→∞−−−→ 1 in probability, and

when we use this together with Eq. (30) we obtain αk
ñ→∞−−−→ 2 ∀k ∈ K in probability (but we
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do not prove or use these limits).

Considering only the dimensions in K (recall |K| = K − 1 here) of each εj , let B3 be the

event as defined in Lemma 4 with δ = 1/n0.51.

Claim 3. Let k = arg mink∈K αk and let k̄ = arg maxk∈K αk. Under event B3, we claim that

αk̄ − αk ≤ δ. (34)

Proof. From Proposition 2, we know that the set of core α’s is a linear polytope, and hence

it is immediate to see that the set of θ’s is an interval. Let k = arg mink∈K αk and let k̄ =

arg maxk∈K αk. Under event B3, we claim that αk̄−αk ≤ δ. We can argue this by contradiction.

Suppose that αk̄ − αk > δ. One can see that all j’s such that εKj ∈ R̂k̄,k(δ), cf. (18), will be

matched to type k̄, with the possible exception of j∗. Thus, under B3, the number of employers

matched to type k̄ is bounded below by

nk̄,k − 1 ≥ ((K − 1)ñ+ 1)/(K − 1) > ñ ,

which is a contradiction, implying (34).

The above claim bounds the maximum difference between α’s corresponding to any pair

of types in K. Intuitively, note that all types in K have the same u and therefore the same

distribution for the θ variables of the agents in such a type. Moreover, all types in K have

the same number of agents. Hence, one would expect the α’s to be equal. While true in the

limit, for each finite n we need to account for the stochastic fluctuations in a given realization.

Therefore, we can show that no pair of α’s in K can differ by more than δ. The next claim

follows immediately from Claim 3.

Claim 4. Let k ∈ K be an arbitrary type. Under event B3, we claim that

max
k′∈K

(
εk
′
j − εkj

)
≤ δ ∀j ∈M(k). (35)

Proof. By Claim 3, we have that under B3, |αk − αk′ | ≤ δ for all k′ ∈ cK. By the stability
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condition in Eq. (30), we have

δ ≥ αk − αk′ ≥ εk
′
j − εkj ∀j ∈M(k), ∀k′ ∈ K.

Therefore, for every j ∈M(k) we must have δ ≥ maxk′∈K ε
k′
j − εkj as desired.

Next, we focus on the stability conditions involving type k∗. For each k ∈ K, the stability

condition is:

εk∗j∗ − ε
k
j∗ ≥ αk − αk∗ ≥ max

j∈M(k)
εk∗j − ε

k
j , (36)

where j∗ is the employer matched to i∗. For each j ∈ E , let Xj be defined as Xj = (maxk∈K ε
k
j )−

εk∗j . The Xj are distributed i.i.d. with cumulative distribution F (−1 + θ) = θK/K for θ ∈ [0, 1]

(we shall not be concerned with the cumulative distribution for positive values). Let B be the

event that exactly one of the Xj ’s is in [−1,−1 + 1/ñ1/K ] (this will be Xj∗), and no Xj is in

[−1 + 1/ñ1/K ,−1 + 2/ñ1/K ]. Under cumulative F , the probability of being in [−1,−1 + 1/ñ1/K ]

is 1/(Kñ) and the probability of being in [−1 + 1/ñ1/K ,−1 + 2/ñ1/K ] is 2K/(Kñ). It follows

that

Pr(B) =

(
ñ+ 1

1, 0, ñ

)
1

Kñ

(
1− 2K/(Kñ)

)ñ
= Ω(1) . (37)

Clearly, under B, we must have j∗ = arg minj∈E Xj . Keeping this in mind, we state and

prove our last claim.

Claim 5. Suppose that B3 ∩ B occurs. Take any core vector (αk∗ , (αk)k∈K). Then

{θ ∈ R : (αk∗ , (αk + θ)k∈K) is in the core} (38)

is an interval of length at least 1/n1/K − 2δ = Ω(1/n1/K). In particular, C ≥ Ω(1/n1/K).
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Proof. Define

θ = 1− 2/ñ1/K + δ − αk + αk∗

θ = 1− 1/ñ1/K − αk̄ + αk∗ .

We claim that, under B3 ∩ B, we have that α(θ) = (αk∗ , (αk + θ)k∈K) is in the core for all

θ ∈ [θ, θ]. To establish this, we need to show that conditions (28) and (30) are satisfied. Since

α belongs to the core, we immediately infer that (28) holds, and also (30) when k∗ /∈ {k, k′} by

the definition of α(θ). That leaves us with (36). Now, for any k ∈ K and θ ∈ [θ, θ] we have

αk(θ) = αk + θ ≤ αk̄ + θ ≤ αk̄ + θ = 1− 1/ñ1/K + αk∗ ≤ ε
k∗
j∗
− εkj∗ + αk∗ ,

where we use the definitions of k̄ and θ, and the fact that B occurs (hence 1−1/ñ1/K ≤ εk∗j∗ −ε
k
j∗).

This establishes the left inequality in (36). Similarly, for any k ∈ K we have

αk(θ) = αk + θ ≥ αk + θ ≥ αk + θ = 1− 2/ñ1/K + δ + αk∗

≥ εk∗j −max
k′∈K

εk
′
j + δ + αk∗ ≥ ε

k∗
j − ε

k
j + αk∗ ∀j ∈M(k) ,

where we use the definitions of k and θ for the first two inqualities, and the fact that B occurs

(so 1−2/ñ1/K ≥ εk∗j −maxk′∈K ε
k′
j , ∀j ∈M(k)). Finally, the last inequality follows from B3 and

Claim 4 (which implies that −maxk′∈K ε
k′
j + δ ≥ −εkj for j ∈ M(k)). This establishes the right

inequality in (36). Thus, we have shown that α(θ) is in the core for all θ ∈ [θ, θ]. We have that

the length of this interval is 1/ñ1/K − (αk̄ − αk) − δ ≥ 1/ñ1/K − 2δ = Ω(1/ñ1/K), using (34).

Therefore, E[C] = Ω(1/ñ1/K) under B3 ∩ B.

Using Lemma 4 and Eq. (37) we have

Pr(B3 ∩ B) = Ω(1) .

Combining this with the claim above we obtain that E[C] = Ω(1/n1/K).
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E Proof of Theorem 2

We start by restating Theorem 2 and discussing the structure of the proof. Recall that we use

the characterization of the size of the core from Lemma 1.

Theorem (Restatement of Theorem 2). Let idiosyncratic productivities be drawn i.i.d. from

any fixed distribution F that is supported in an interval of the form [0, Cu] or [0,∞) where

Cu < ∞, and whose density f is strictly positive and continuous everywhere in the support.4

In addition, suppose that u(k, 1) ≥ 0 for all k ∈ TL. Consider the setting in which K ≥ 2,

Q = 1, nE > nL and let m = nE −nL. Under Assumption 2, we have, with high probability, that

C ≤ O∗
(

1

n
1
Km

K−1
K

)
. Also, E[C] ≤ O∗

(
1

n
1
Km

K−1
K

)
.

Note that Assumption 1 is automatically satisfied under the hypotheses of the theorem.

As in the proof of Theorem 1, we first prove the result for F being Uniform(0, 1), and

later extend our proof to more general F . The idea of the proof is as follows. First, we

show a bound on the expectation of mink∈TL{αmax
k − αmin

k }. In particular, we show that

E
[
mink∈TL{αmax

k − αmin
k }

]
= O∗

(
1

n
1
Km

K−1
K

)
. To do so, we note that by condition (IM) in

Proposition 2, we must have

min
k

(
αmax
k − αmin

k

)
≤ min

k∈TL

(
min

j∈M(k)
εkj −max

j∈U
εkj

)
.

Then, we consider two separate cases to prove the result, depending on the size of the imbalance.

When m ≤ log(n), the result is shown in Lemma 1, which we prove via an upper bound on

mink∈TL

(
minj∈M(k) ε

k
j

)
. On the contrary, when m ≥ log(n), the result is shown in Lemma 4.

The proof of Lemma 4 relies mainly on the geometry of a core solution that (roughly) allows us

to control the largest of the α’s (all α’s must be negative in the core since some employers are

unmatched, and we control, roughly, the least negative α).

Next, we then show that, for every pair of types k, q ∈ TL, we must have

E

[
min

j∈M(k)
(εkj − ε

q
j)− max

j∈M(q)
(εkj − ε

q
j)

]
= O∗

(
1

n

)
.

4If the lower limit of the support of F is positive, this can be absorbed into the u’s, and hence this case is
covered.
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By condition (ST) in Proposition 2, this implies that for fixed k, q ∈ TL, the expected maximum

variation in αk − αq in the core is bounded by O∗
(

1
n

)
.

Finally, we use the bounds in the first two steps to argue that, for every type k ∈ TL,

E
[
αmax
k − αmin

k }
]

= O∗

(
1

n
1
Km

K−1
K

)
,

which implies E[C] = O∗
(

1

n
1
Km

K−1
K

)
. This is done in the proof of Theorem 2.

We now show our bound on E
[
mink{αmax

k − αmin
k }

]
. To that end, let Zk = minj∈M(k) ε

k
j and

Uk = maxj∈U ε
k
j . By condition (IM) in Proposition 2, E

[
mink |αmax

k − αmin
k |

]
≤ E[mink{Zk −

Uk}], and therefore we shall focus on bounding E[mink{Zk−Uk}]. As a reminder, we have defined

m = nE − nL and δn = log(n)

n
1
Km

K−1
K

. Also, in all lemmas we are working under the assumptions of

the theorem, that is, K ≥ 2, Q = 1, nE > nL and Assumption 2.

Lemma 1. Suppose that m ≤ 6K log(nE). Then, there exists a constant C3 = C3(K) <∞ such

that E
[
mink{αmax

k − αmin
k }

]
≤ 2C3

log(n)

n
1
Km

K−1
K

.

Proof. Let Zk = minj∈M(k) ε
k
j , Uk = maxj∈U ε

k
j , and δn = log(n)

n
1
Km

K−1
K

. By condition (IM) in

Proposition 2, E[mink{αmax
k − αmin

k }] ≤ E[mink{Zk − Uk}]. As Uk is a nonnegative random

variable, we have E[mink{Zk − Uk}] ≤ E[mink{Zk}]. Therefore, we have

E[min
k
{αmax

k − αmin
k }] ≤ E

[
min
k
{Zk − Uk}

]
≤ E

[
min
k
{Zk}

]
≤ C3δn + Pr

(
min
k
Zk ≥ C3δn

)
,

using Zk ≤ 1.

To finish the proof, it suffices to show that Pr (mink Zk ≥ C3δn) ≤ C3δn. Hence, our next

step is to bound Pr (mink Zk ≥ C3δn). Now mink Zk ≥ C3δn implies that all j such that εj ∈

[0, C3δn]K are unmatched. But there are only m unmatched employers. It follows that

Pr

(
min
k
Zk ≥ C3δn

)
≤ Pr

(
at most m points in the hypercube [0, C3δn]K

)
.
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Let X ∼ Bin
(
nE , (C3δn)K

)
be defined as the number of points, out of nE in total, that fall in

the hypercube [0, C3δn]K . By assumption, m ≤ 6K log(n) and thus (C3δn)K ≥ (C3 log n/m)K/n ≥

2K log nK/n ≥ 4(log n)2/n by defining C3 ≥ 12K and using K ≥ 2. Furthermore, using n ≤ 2nE

we obtain E[X] = nE (C3δn)K ≥ (n/2)4(log n)2/n = 2(log n)2. It follows that

Pr

(
min
k
Zk ≥ C3δn

)
≤ Pr

(
X ≤ 6K log(n)

)
≤ exp(−Ω((log n)2)) ≤ 1

n
≤ C3δn.

where the second inequality is obtained by applying the Chernoff bound. Hence, we have shown

that

E[min
k
{αmax

k − αmin
k }] ≤ E

[
min
k
{Zk}

]
≤ C3δn + Pr

(
min
k
Zk ≥ C3δn

)
≤ 2C3δn,

which completes the proof.

We now establish an upper bound for the case in which m ≥ 6K log(nE). For the following

results up to Lemma 4 we shall assume that m ≥ 6K log(nE).

Before we move on, we briefly give some geometric intuition regarding the problem. For

each agent j ∈ E , let εj = (ε1j , . . . , ε
K
j ) denote the profile of values assigned by the K types of

agents in L to agent j. Given our stochastic assumptions, all points εj will be distributed in

the [0, 1]K hypercube. Using Proposition 2, we can partition the [0, 1]K-hypercube into K + 1

disjoint regions: K of them containing the nk points corresponding to agents matched to type

k (1 ≤ k ≤ K), and one region containing all unmatched agents. Furthermore, the region

containing the unmatched agents is an orthotope5 that has the origin as a vertex. This follows

for the (IM) constraints in Proposition 2.

To establish an upper bound for the case in whichm is greater than or equal to 6K log(nE), let

O be the set of K-orthotopes contained in [0, 1]K that have the origin as a vertex. Suppose that

R is expanded by the same amount θ in each coordinate direction. Define D(R) as the smallest

value of θ such that an additional point εj is contained in the expanded orthotope. (If one of the

side lengths becomes 1 before an additional point is reached, then define D(R) = 0. This will

5An orthotope (also called a hyperrectangle or a box) is the generalization of a rectangle for higher dimensions
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never occur for R that contains only the unmatched agents.) As usual, let Zk = minj∈M(k) ε
k
j

and Uk = maxj∈U ε
k
j . We want to show that E

[
mink{Zk − Uk}

]
≤ C5δn, for some constant

C5 = C5(K) <∞. To that end, note that mink{Zk − Uk} is equal to D(R) for some orthotope

R ∈ O. In particular, mink{Zk − Uk} is equal to D(R) when R is the orthotope that “tightly”

contains all the m points in U .

For R ∈ O, let V (R) be defined as the volume of R. In addition, we define |R| to be the

number of points contained in R. We start by showing that, given that m ≥ 6K log(n), an

orthotope in O of volume less than m
4nE

in extremely unlikely to contain m points.

Lemma 2. Suppose that m ≥ 6K log(n). For R ∈ O such that V (R) < m
4nE

, we have

Pr
(
|R| = m

)
≤ 1

nK+1 , where V (R) denotes the volume and |R| denotes the number of points

in R.

Proof. Let X denote the number of points in an orthotope in O of volume m
4nE

. Then, X ∼

Bin
(
nE ,

m
4nE

)
. We have µ = E[X] = m/4. Using a Chernoff bound, we have,

Pr(X ≥ m) = Pr(X ≥ 4µ) ≤ (e3/44)m/4 ≤ exp(−m/4).

Now m/4 ≥ 6K log n/4 ≥ (K + 1) log n, using K ≥ 2. Substituting back we obtain Pr(X ≥

m) ≤ exp(−(K + 1) log n) = 1/nK+1. But |X| stochastically dominates |R| since V (R) < m
4nE

.

The result follows.

Our next step will be to bound Pr
(
D(R) > C4δ

∣∣∣ E) , for R ∈ O and some constant C4 =

C4(K) <∞, where E is the event defined as E = {|R| = m, V (R) ≥ m
4nE
}.

Lemma 3. There exists some constant C4 = C4(K) < ∞ such that, for all R ∈ O with

V (R) ≥ m
4nE

, we have that P
(
D(R) > C4δn

∣∣∣ |R| = m
)
≤ 1

nK+1 , where δn = log(n)

n
1
Km

K−1
K

.

Proof. Conditioned on |R| = m, the remaining nL = nE −m points are distributed uniformly

i.i.d. in the complementary region of volume (1− V (R)).
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Let FC4δn denote the region swept when R is expanded by C4δn along each coordinate axis.

Clearly, D(R) > C4δn if and only if region FC4δn contains no points.

Let X denote the number of points in FC4δn , and let p denote the volume of FC4δn . Then,

X ∼ Bin(nL, p/(1 − V (R))) and hence stochastically dominates Bin(nL, p)). Note that such a

volume p is at least the volume obtained when expanding the hypercube of side ` = K

√
m

4nE
by

C4δn along each direction and, therefore, p ≥ K`(K−1)C4δn. Hence,

P (D(R) > C4δn) = Pr(X = 0) ≤ (1− p)L ≤ exp
{
−Ω(np)

}
≤ exp{−Ω(n(

m

n
)(K−1)/KC4δn)} = exp{−Ω(C4 log n)} ≤ 1

nK+1
,

for appropriate C4, where we have used Assumption 2.

Lemma 4. Suppose that m ≥ 6K log(n). Then, there exists a constant C5 = C5(K) <∞, such

that E
[
mink{αmax

k − αmin
k }

]
≤ C5

log(n)

n
1
Km

K−1
K

.

Proof. Let Zk = minj∈M(k) ε
k
j , Uk = maxj∈U ε

k
j , and δn = log(n)

n
1
Km

K−1
K

. By condition (IM) in

Proposition 2, we know that αmax
k − αmin

k ≤ Zk − Uk. Then,

E

[
min
k
{αmax

k − αmin
k }

]
≤ E

[
min
k
{Zk − Uk}

]
.

In addition, mink{Zk−Uk} is equal to D(R) for some orthotope R ∈ O. In particular, mink{Zk−

Uk} is equal to D(R) when R is the orthotope that “tightly” contains all the m points in U .

Define R = {R ∈ O : |R| = m}. Then,

E

[
min
k
{Zk − Uk}

]
≤ E

[
max
R∈R

{
D(R)

}]
.

To bound E
[
maxR∈R

{
D(R)

}]
, consider the grid that results from dividing each of the K

coordinate axes in the hypercube into intervals of length 1/n. Let ∆ denote that grid. Suppose

that we just consider orthotopes in the grid, that is, the orthotopes whose sides are multiples of
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1
n . Let R∆ = {R ∈ R : R ∈ ∆}. Then,

max
R∈R

{
D(R)

}
≤ max

R∈R∆

{
D(R)

}
+

1

n
,

and,

E

[
max
R∈R

{
D(R)

}]
≤ E

[
max
R∈R∆

{
D(R)

}]
+

1

n
.

Hence, we just need a bound for E
[
maxR∈R∆

{
D(R)

}]
. Let V∗ = m

4n . Note that D(R) ≤ 1

for all R ∈ O and, therefore,

E

[
max
R∈R∆

{
D(R)

}]
≤ E

[
max
R∈R′∆

{
D(R)

}]
+ Pr

(
min
R∈R∆

V (R) < V∗

)

where R′∆ = {R ∈ R∆ : V (R) ≥ V∗}. Now, by union bound

Pr

(
min
R∈R∆

V (R) < V∗

)
≤

∑
R∈∆:V (R)<V∗

Pr(|R| = m) ≤ nK · 1/nK+1 = 1/n ,

using |{R ∈ ∆ : V (R) < V∗}| ≤ |{R ∈ ∆}| = nK and Lemma 2.

Furthermore,

E

[
max
R∈R′∆

{
D(R)

}]
≤ E

[
max

R∈∆:V (R)≥V∗

{
D(R)I(|R| = m)

}]

Now we have

Pr

[
max

R∈∆:V (R)≥V∗

{
D(R)I(|R| = m)

}
> C4δn

]

≤
∑

R∈∆:V (R)≥V∗

Pr(|R| = m) Pr[D(R) > C4δn||R| = m]

≤
∑

R∈∆:V (R)≥V∗

1 · 1/nK+1 ≤ nK/nK+1 = 1/n,

using a union bound and Lemma 3 to bound the probability of D(R) ≥ C4δn. It follows that

E

[
max
R∈R′∆

{
D(R)

}]
≤ 1 · Pr

[
max

R∈∆:V (R)≥V∗

{
D(R)I(|R| = m)

}
> C4δn

]
+ C4δn = 1/n+ C4δn.
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Substituting the individual bounds back, we obtain

E

[
max
R∈R

{
D(R)

}]
= C4δn + 2/n ≤ C5δn ,

by defining C5 = C4 + 2 and using 1/n ≤ δn.

Overall,

E

[
min
k
{αmax

k − αmin
k }

]
≤ E

[
min
k
{Zk − Uk}

]
≤ E

[
max
R∈R

{
D(R)

}]
≤ C5δn ,

as claimed.

We now proceed to show that, for every pair of types k, q ∈ TL, we have

E

[
min

j∈M(k)
(εkj − ε

q
j)− max

j∈M(q)
(εkj − ε

q
j)

]
≤ C2

log(nE)

nE
,

for appropriate C2 = C2(K) <∞. This result is shown in Lemma 7. Along the way, we establish

a couple of intermediate results.

Let Zk = minj∈M(k) ε
k
j and Uk = maxj∈U ε

k
j . Note that Zk is an upper bound for −αk.

By the definition of Zk, all the points corresponding to agents in M(k) must be contained in

the orthotope [1 − Zk, 1] × [0, 1]K−1. The following proposition establishes that Zk cannot be

arbitrarily close to 1.

Lemma 5. Given a constant c ∈ R, let the event Ec be defined as Ec = {maxk minj∈M(k) ε
k
j ≤

1 − c}. Then, there exist constants θ = θ(K) > 0 and C6 = C6(K) > 0 such that, for large

enough n, Eθ occurs with probability at least 1− exp (−C6n).

Proof. Let Zk = minj∈M(k) ε
k
j . The proof follows from the previous observation that all the

points corresponding to agents in M(k) must be contained in the orthotope of volume (1−Zk).

Let C < ∞ be such that
nE
nL
≤ C. By Assumption 2, such a C must exist. Furthermore, by
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Assumption 2, there must exist CK ∈ R such that nk ≥ CKn for all k ∈ TL. Let nE be the total

number of points in the cube [0, 1]K . Let X denote the number of points out of the nE ones

that fall in the rectangle defined by [1− θ, 1]× [0, 1]K−1. Then, X ∼ Bin(nE , θ). Suppose that

we set θ < CK
2C . Then, for large enough n and appropriate C6 > 0, we have

Pr(Zk > 1− θ) ≤ Pr(X ≥ CKnL) ≤ Pr

(
X ≥ CKnE

C

)
≤ exp (−2C6n) ≤ (1/K) exp (−C6n) ,

where we have used a Chernoff bound, 2nE ≥ n, and exp(−C6n) ≤ (1/K) for large enough n.

The result follows from a union bound over possible k.

Remark 1. Let θ, Eθ, and C6 be as defined in the statement of Lemma 5. Define Gk,q as

Gk,q =

{
x ∈ [0, 1]K :

(
xk ≥ 1− θ

2
or xq ≥ 1− θ

2

)
and xr <

θ

2
for all 1 ≤ r ≤ K, r 6= k, q

}
.

Under event Eθ, we must have Gk,q ⊆M(k) ∪M(q).

The above remark follows from Lemma 5 and the definition of Gk,q. If j : εj ∈ Gk,q were

matched to a type k′ /∈ {k, q}, that would contradict the maximality of the matching as, by

swapping the matches of j′ : j′ ∈ M(k), εkj′ = Zk and j, the overall weight of the matching

strictly increases. A similar argument rules out j being unmatched.

Lemma 6. Let Gk,q be as in Remark 1, and let θ be as defined in Lemma 5. Define G′k,q as

follows:

G′k,q = Gk,q ∩ {x ∈ [0, 1]K , |xk − xq| ≤ 1− θ}

Let Vkq = {x : x = εkj − ε
q
j , εj ∈ G′k,q}, and let

V kq = max(Difference between consecutive values in Vkq ∪ {−1 + θ, 1− θ}).

Then, there exists a function f(n) = O∗(1/n) such that Pr
(
Bkq
)
≤ 1/n where Bkq is the event
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that V kq ≤ f(n).

The proof of Lemma 6 is omitted as the required analysis is similar to (and much simpler

than) that leading to Lemma 1. Essentially, V kq consists of values taken by Θ(n) points dis-

tributed uniformly and independently in [−1 + θ, 1 − θ], and so, with high probability, no two

consecutive values are separated by more than f(n) = O(log n/n).

In the next lemma we bound the difference between every pair of α’s.

Lemma 7. Consider types k, q ∈ TL and let f be as defined in the statement of Lemma 6. Under

event Eθ∩Bkq, in every stable solution we must have that (αmax
q −αmin

q ) ≤ 2f(n)+(αmax
k −αmin

k ).

Proof. We claim that under Eθ, we must have that αq − αk varies within a range of no more

than V kq within the core, where V kq is as defined in the statement of Lemma 6. By Remark 1,

under event Eθ we must have G′kq ⊂M(k) ∪M(q), where G′kq is as defined in the statement of

Lemma 6. Suppose that G′kq contains at least one vertex matched to type k and one to type q.

Then, by condition (ST) in Proposition 2 we must have:

(αq − αk)max − (αq − αk)min ≤ min
j∈M(k)

{εkj − ε
q
j} − max

j∈M(q)
{εkj − ε

q
j}

≤ min
j∈M(k)∩G′k,q

{εkj − ε
q
j} − max

j∈M(q)∩G′k,q
{εkj − ε

q
j}

≤ V kq.

Next, consider the case in which all vertices in G′kq are matched to type k (the analogous

argument follows if they are all matched to type q). Under event Eθ, by Condition (IM) in

Proposition 2 we must have 0 ≤ −αk ≤ 1 − θ and 0 ≤ −αq ≤ 1 − θ. Therefore, αq − αk ∈

[−1 + θ, 1 − θ]. In addition, by Condition (ST) in Proposition 2 we must have αq − αk ≤
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minj∈M(k){εkj − ε
q
j}. However,

(αq − αk)max − (αq − αk)min ≤ min
j∈M(k)

{εkj − ε
q
j} − (−1 + θ)

≤ min
j∈M(k)∩G′k,q

{εkj − ε
q
j} − (−1 + θ)

= min
j∈G′k,q

{εkj − ε
q
j} − (−1 + θ)

≤ V kq.

It follows that (αmax
q − αmin

q ) ≤ 2V kq + (αmax
k − αmin

k ). By definition, under Bkq we have

V kq ≤ f(n), which completes the proof.

Finally, we complete the last step of the proof by showing the main theorem.

Proof of Theorem 2. By definition, C =
∑K

k=1

N(k)|αmax
k − αmin

k |
nL

, where N(k) is defined to be

the number of agents of type k that are matched. For a given instance, let k∗ = argmink{αmax
k − αmin

k }.

Let B = Eθ ∩ (∩k,qBk,q). Note that using Lemmas 1 and 6 and a union bound, we obtain that

Pr(B) ≤ Pr(Eθ) +
∑

k,q∈K:k 6=q
Pr(Bkq) = O(1/n) .

By Lemma 7, under B, for every k ∈ TL we have

αmax
k − αmin

k ≤ 2f(n) + αmax
k∗ − αmin

k∗ .

Therefore,

E[C] ≤ E
[
αmax
k∗ − αmin

k∗

]
+ 2f(n) + Pr(B) ·O(1)

≤ O

(
log(n)

n
1
Km

K−1
K

)
+O∗(1/n) +O(1/n)

= O∗

(
1

n
1
Km

K−1
K

)

where the first inequality follows from the above together with using the upperbound of O(1)
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for the core size; the second inequality is obtained by using the bound on E
[
αmax
k∗ − αmin

k∗

]
from

Lemma 1 for m ≤ 6K log(n) and Lemma 4 for m ≥ 6K log(n), as well as the definition of

f(n) and Pr(B) = O(1/n) shown above. Finally, we note that each of the steps yields a bound

that holds with high probability (instead of a bound on expected value) if we multiply by an

additional log n factor. This yields that, with high probability,

C ≤ O∗
(

1

n
1
Km

K−1
K

)
.

This completes the proof for F being Uniform(0, 1).

Now consider general F satisfying the conditions stated in the theorem. We extend our proof

just as we extended the proof of Theorem 1 to general F . Lemma 2 gives us a lower bound of

−U ≤ αkq for any core α, whereas we already know that −Cu ≥ αkq ≤ 0 since some employers

are unmatched and others are matched. Overall, we know αkq ∈ [−min(U,Cu), 0]. We scale

utilities down by a factor min(U,Cu). Now the density of firm productivities is uniformly lower-

bounded in [0, 1], and firm productivity values in [0, 1] are the only relevant ones. Moreover, Ω(n)

firms have all productivities lying in [0, 1]. Hence, our bound on the gap between consecutive

order statistics and their linear combinations in the unit hypercube implies the same bound (up

to constant factors) for general F , and hence we get the same bound on core size for general

F .

F Proof of Theorem 3

In this appendix, we state and prove a more detailed version of Theorem 3.

Theorem 2. Fix K and Q and a distribution F . Also fix the fraction ρk of each agent type

k, where k can be a type of worker or a type of employer. We draw a market with n agents by

independently drawing the type of each agent, and then independently drawing the idiosyncratic

productivities from the distribution F . We obtain the following bounds as a function of n.

• Limit characterization of α. There exists α∗ = α∗(K,Q, ρ, F ) such that as n→∞, we

have that both αmax and αmin converge (in probability and almost surely) to α∗. In fact,
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for any hn = ω(1) we have that with high probability, for every core outcome (M,α),

‖α− α∗‖ ≤ hn/
√
n . (39)

• Size of the core. There exists C = C(K,Q, ρ, F ) < ∞ such that with high probability,

the size of the core is bounded as

C ≤ C log n/n . (40)

We formally establish the claims stated as part of the proof at the end of this appendix.

Proof of Theorem 2. We define a discrete tatonnement operator T : RK+Q → RK+Q that takes

a price vector α to an updated price vector Tα in a limit market (we do not formally define the

limit market, but it guides our intuition). The operator T will be monotone, as a result of a

gross substitutes property on both sides of the market. Its fixed point α∗ will be turn out to be

the limiting core solution. We also define a corresponding operator Tn for the n-th market to

relate core outcomes α in that market to α∗. Our approach draws on the order-theoretic/lattice-

theoretic approach that has yielded rich dividends in matching theory (Gale and Shapley 1962,

Kelso and Crawford 1982, Hatfield and Milgrom 2005) and in the study of equilibrium more

broadly.

We start by defining the “limit” operator T. The idea is that when T acts on a price vector

α to produce an updated price vector Tα, it computes each price (Tα)kq as follows: treating all

other prices as given, it computes the limiting “demand curve” Dkq(p) of the number of type

k workers who want to match to type q employers as a function of the price between type-pair

(k, q) (here p is the dummy variable for this price), and the limiting “supply curve” Skq(p) of

the number of type q employers who want to match to type k workers. Then (Tα)kq is set to

the value of p at which the demand and supply curves intersect. (There will be a unique such

point, since Dkq(p) will be strictly decreasing in p and Skq(p) will be strictly increasing in p.)
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We define

Dkq(p;α) = ρk

∫ ∞
0

f(z + p− u(k, q))
∏
q′ 6=q

F (z + αkq′ − u(k, q′)) dz (41)

(where z serves as a dummy variable for the utility earned by an agent of type k, who finds type

q at price p more attractive to match to than any other type q′ at price αkq′) and

Skq(p;α) = ρq

∫ ∞
0

f(z − p)
∏
k′ 6=k

F (z − αk′q) dz . (42)

We now suppress the α dependence, simply writing Dkq(p) and Skq(p). It is easy to verify that

Dkq(·) is strictly monotone decreasing and that Skq(·) is strictly monotone increasing, given that

f(·) is positive everywhere. Furthermore, both Dkq(·) and Skq(·) are positive everywhere, and

limp→∞Dkq(·) = 0 and limp→−∞ Skq(·) = 0. Combining, we deduce that there is a unique price

where the demand curve Dkq(·) and the supply curve Skq(·) intersect, and we define (Tα)kq to

be equal to this price.

Strict gross substitutes property on both sides of the limit market. Write α � α′

if αkq ≤ α′kq for all k ∈ TL, q ∈ TE , and α ≺ α′ if at least one of these inequalities is strict. Now,

viewing Dkq(p; ·) as a function of α, it is easy to verify that Dkq(p; ·) is monotone increasing

with respect to the defined ordering on α’s (the demand for type q increases if the price of other

employer types increases); i.e., if α � α′, then Dkq(p;α) ≤ Dkq(p;α
′) for all p. In other words,

the demand from each type of worker satisfies strict gross substitutes. Similarly, Skq(p; ·) is

monotone decreasing by the strict gross substitutes property for each type of employer.

Thus, increasing α causes the demand curve to move up and the supply curve to move down,

and hence it causes the price at which they intersect to move up. It follows that T is monotone

increasing in α.

Fact 8. If α � α′ then Tα � Tα′.

We now show existence of a fixed point of T, thereby overcoming the challenge that the set

of possible α’s is not compact. To do this, we show that there is a (large) price P such that with

αP := (P, P, . . . , P ) we have TαP � αP , and another (large negative) price P ′ such that with
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αP ′ := (P ′, P ′, . . . , P ′) we have TαP ′ � αP ′ . Then, starting with αP and iteratively applying T,

we get a fixed point α∗, using monotonicity.

Set all prices to be equal to P . Now P is the only variable. We have

Dkq(P ;αP ) = ρk

∫ ∞
P

f(w − u(k, q))
∏
q′ 6=q

F (w − u(k, q′)) dw . (43)

Note that Dkq(P ;αP ) is positive everywhere, decreasing in P , and limP→∞Dkq(P ;αP ) = 0. We

also have that mink,qDkq(P ;αP ) is positive everywhere, decreasing in P , and

lim
P→∞

min
k,q

Dkq(P ;αP ) = 0 .

Similarly,

Skq(P ;αP ) = ρq

∫ ∞
−P

f(w)
∏
k′ 6=k

F (w) dw . (44)

Note that Skq(P ;αP ) is positive everywhere, increasing in P , and limP→−∞ Skq(P ;αP ) = 0. We

also have mink,q Skq(P ;αP ) is positive everywhere, increasing in P , and

lim
P→−∞

min
k,q

Skq(P ;αP ) = 0 .

It follows that for large enough P we have TαP � αP and for small enough P ′ we have TαP ′ �

αP ′ . We deduce that T is a monotone self-mapping of [P ′, P ]K+Q, and it follows that it has

a fixed point, and that the set of fixed points forms a complete lattice. (A fixed point can

be computed by starting with αP and iteratively applying T until convergence.) Combining

this with the fact that any fixed point must balance supply and demand, we obtain uniqueness

(proofs of all claims are at the end of this appendix).

Claim 1. The operator T has a unique fixed point α∗.

Consider the fixed point α∗ of T. Let g(n) = hn/
√
n for any hn = ω(1). In the argument

below we use hn =
√

log n ⇒ g(n) =
√

log n/n, but this is only an example of a possible hn

that can be used. Define αlb by αlb
kq = α∗kq − g(n) for all k, q and αub by αub

kq = α∗kq + g(n).
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We shall show that, for appropriate C, there is a core outcome in the n-th market satisfying

αlb � α � αub, and that all core outcomes are within C log n/n of α. Define ν∗kq = Dkq(α
∗
kq;α

∗),

and show that N(k, q)/n approaches ν∗kq.

We now define an operator Tn such that its fixed point will capture a core solution in the

n-th market. Analogous to Eq. (43) and Eq. (44), we define demand and supply for the n-the

market to be6

D̂kq(p;α) =
∣∣{i : τ(i) = k, u(k, q)− p+ ηqi ≥ u(k, q′)− αkq′ + ηq

′

i for all q′ 6= q
}∣∣ (45)

and

Ŝkq(p;α) =
∣∣{j : τ(j) = q, p+ εkj ≥ αk′q + εk

′
j for all k′ 6= k

}∣∣ (46)

for the n-th market. We define (Tnα)kq = inf{p : Ŝkq(p;α) > D̂kq(p;α)}. As before, Dkq

is (weakly) monotone decreasing in p and (weakly) monotone increasing in α, whereas Skq is

(weakly) monotone increasing in p and (weakly) monotone decreasing in α. (The monotonicities

in α constitute a weak gross substitutes property for each type of agent on both sides of the

market.) We deduce monotonicity of Tn.

Fact 9. If α � α′ then Tnα � Tnα
′.

Our next claim implies that Tn has a fixed point that lies between αlb and αub.

Claim 2. With high probability, we have Tnα
ub � αub and Tnα

lb � αlb. Hence, Tn has a fixed

point α satisfying αlb � α � αub.

The proof of this claim uses the convergence of the empirical distribution of (type, produc-

tivity vector) for agents to the limiting distribution. The main part of the proof is to show

that w.h.p., at prices αub, the demand is less than the supply for each type pair (whereas the

opposite is true at αlb). This is accomplished by showing that the realized demand (supply) at

6To be perfectly precise, we should ensure that each worker counts toward exactly one unit of total demand by
using a mix of strict and weak inequalities in the definition of Dkq, based on the direction in which ties between
q and q′ are broken in each case. To make all the details work out, we require agents to break ties in favor of the
type they are matched to under the maximum-weight matching M .
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αub is less (more) than the limiting demand (supply) at α∗. In turn, the definition of αub helps

us show this, because the relative prices of different types are the same as under α∗, but each

of them is now more expensive relative to remaining unmatched.

It is not hard to show that the fixed points of T correspond to core price vectors.

Claim 3. Let α be a fixed point of Tn. Then (M,α) is a core outcome, where M is the maximum-

weight matching.

Though we don’t need the converse, we remark that it holds: for any core outcome (M,α),

the prices α are a fixed point of Tn.

Combining Claims 2 and 3 immediately gives a core solution α close to α∗, i.e., the bound

(1) for some core solution. We are also in a position to prove (2), leveraging the following

claim that controls demand and supply in the n-th market for all price vectors between αlb and

αub. In particular, the bounds in the claim apply to the core solution α, where D̂kq(αkq;α) =

Ŝkq(αkq;α) = N(k, q), thus yielding (2).

Claim 4. Let ν∗kq = Dkq(α
∗
kq;α

∗). Then, there exists f(n) = O∗(
√
n) such that, with high

probability, for all αlb � α � αub we have, for all (k, q) ∈ T , that

∣∣D̂kq(αkq;α)− nν∗kq
∣∣ ≤ f(n) ,∣∣Ŝkq(αkq;α)− nν∗kq
∣∣ ≤ f(n) .

For the second part of the theorem (bound (3)), we prove the following claim, and use it

together with the fact that weight(M) = Ω(n) with high probability, which follows from ρk > 0

for all k, and f(x) > 0 for all x. The claim also completes the proof of (1) for all core solutions.

Claim 5. There exists C = C(K,Q, ρ, f) <∞ such that for all k, q we have

|αmax
kq − αmin

kq | ≤ C
log n

n
. (47)

42



The proof of this claim relies on the fact that all core αkq’s must lie between some consecutive

order statistics of εqi ’s for workers i who are type k, and are either unmatched or matched to type

q. Furthermore, these order statistics are close together in the vicinity of α∗, and we already

know that it is sufficient to consider this vicinity.

We now provide proofs of all the claims above that facilitated our proof of Theorem 2.

Proof of Claim 1. The set of α ∈ [P ′, P ]K+Q is a complete sublattice. Since T is a monotone self-

mapping of this set, it has a nonempty set of fixed points that themselves form a complete lattice.

Take the two extreme fixed points αmax(T ) and αmin(T ). Suppose that αmax(T ) � αmin(T ). Fix

a price vector α. A direct calculation yields the following intuitive expression for the total

demand from worker type k:

∑
q

Dkq(αkq;α) = ρk

(
1−

∏
q

F (αkq − u(k, q))
)
. (48)

Similarly, the total supply from an employer of type q is

∑
k

Skq(αkq;α) = ρq

(
1−

∏
k

F (−αkq)
)
. (49)

For ease of notation, we write Dmax
kq =

∑
qDkq(α

max
kq (T);αmax(T)), and so on. It follows from

αmax(T ) � αmin(T ) and Eqs. (48) and (49) that

∑
k

∑
q

Dmax
kq <

∑
k

∑
q

Dmin
kq

∑
k

∑
q

Smax
kq >

∑
k

∑
q

Smin
kq .

At any fixed point of T, we know that Dkq = Skq ⇒
∑

k

∑
qDkq =

∑
k

∑
q Skq. Hence,

∑
k

∑
q

Dmin
kq =

∑
k

∑
q

Smin
kq

⇒
∑
k

∑
q

Dmax
kq <

∑
k

∑
q

Smax
kq ,
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a contradiction.

Proof of Claim 2. We shall use the fact that E[D̂kq(p;α)] = nDkq(p;α) for any p and α, along

with concentration bounds, to obtain the claim. We shall show that w.h.p., we have D̂kq(α
ub
kq ;αub) <

Ŝkq(α
ub
kq ;αub), which will immediately imply that (Tnα

ub)kq ≤ αub
kq , i.e., Tnα

ub � αub. (The

proof of Tnα
lb � αlb is analogous and we omit it.) We show existence of the fixed point by

starting with αub and iteratively using Tn until (monotone) convergence to α is obtained.

Note that D̂kq(α
ub
kq ;αub) is distributed as Binomial(n,Dkq(α

ub
kq ;αub)). It follows that

Pr[D̂kq(α
ub
kq ;αub) < n(Dkq(α

ub
kq ;αub) + cn)] ≥ 1− exp(−2nc2

n) , (50)

for any c using a standard Chernoff bound. Furthermore, a direct calculation7 gives

Dkq(α
∗
kq;α

∗)−Dkq(α
ub
kq ;αub) = ρk

∫ g(n)

0
f(z + α∗kq − u(k, q))

∏
q′ 6=q

F (z + α∗kq′ − u(k, q′)) dz

⇒ lim
n→∞

Dkq(α
∗
kq;α

∗)−Dkq(α
ub
kq ;αub)

g(n)
= ρkf(α∗kq − u(k, q))

∏
q′ 6=q

F (α∗kq′ − u(k, q′)),

using the continuity of f(·) and that limn→∞ g(n) = 0. Define

cn =
g(n)

2
min
k,q

[
ρkf(α∗kq − u(k, q))

∏
q′ 6=q

F (α∗kq′ − u(k, q′))
]
.

Note that nc2
n = Ω((log n)2). Then, for large enough n, we have

Dkq(α
∗
kq;α

∗) ≤ Dkq(α
ub
kq ;αub) + cn for all k, q .

Substituting in Eq. (50), we obtain

Pr[D̂kq(α
ub
kq ;αub) < nDkq(α

∗
kq;α

∗)] ≥ 1− exp
(
− Ω(log n)

)
= 1− o(1) for all k, q ; (51)

7It is important here that αub and α∗ differ by the same amount in each coordinate, meaning that the relative
attractiveness of types on the other side is unchanged.
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i.e., with high probability,

D̂kq(α
ub
kq ;αub) < nDkq(α

∗
kq;α

∗) for all k, q .

Using an analogous argument, we establish that with high probability,

Ŝkq(α
ub
kq ;αub) > nSkq(α

∗
kq;α

∗) for all k, q .

Now, by definition of α∗ we have Dkq(α
∗
kq;α

∗) = Skq(α
∗
kq;α

∗) for all k, q. We deduce that,

w.h.p.,

Ŝkq(α
ub
kq ;αub) > D̂kq(α

ub
kq ;αub) for all k, q ,

as needed.

Proof of Claim 3. Let α be a fixed point of Tn. Then α clears the market up to tie-breaking,

and using the fact that this is a two-sided matching setting, the tie-breaking can be done so as

to obtain a matching M ′ such that (M ′, α) is a core outcome. This also means that M ′ = M ,

the maximum-weight matching.

Proof of Claim 4. Consider Ŝkq(αkq;α). Let Ŝmax
kq and Ŝmin

kq be the largest and smallest values,

respectively, of Ŝkq for α in the specified range. Using the monotonicities of Ŝkq in its arguments,

we have

Ŝmax
kq = Ŝkq(α

ub
kq ;αlb) ,

Ŝmin
kq = Ŝkq(α

lb
kq;α

ub) .
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Using the definition (46) of Ŝkq, we have that

Ŝmax
kq − Ŝmin

kq ≤
∣∣{j : τ(j) = q, |α∗kq + εkj | ≤ g(n)

}∣∣
+
∑
k′ 6=k

∣∣{j : τ(j) = q, |εkj − εk
′
j + α∗kq − α∗k′q| ≤ g(n)

}∣∣ . (52)

Now we obtain

∣∣{j : τ(j) = q, |α∗kq + εkj | ≤ g(n)
}∣∣ = Binomial(nρq, F (−α∗kq + g(n))− F (−α∗kq − g(n)))

≤ O∗(
√
n) ,

w.h.p., using that g(n) =
√

log n/n. Let F1 be the distribution of the difference between two i.i.d.

draws from F . The F1 is also a distribution with positive and continuous density everywhere in

(−∞,∞). We can bound each of the other terms in Eq. (52) as

∣∣{j : τ(j) = q, |εkj − εk
′
j + α∗kq − α∗k′q| ≤ g(n)

}∣∣
= Binomial(nρq, F1(−α∗kq + α∗k′q + g(n))− F1(−α∗kq + α∗k′q − g(n)))

≤ O∗(
√
n) .

Combining, we obtain that, with high probability,

Ŝmax
kq − Ŝmin

kq ≤ O∗(
√
n)

⇒ |Ŝkq(αkq;α)− Ŝkq(α∗kq;α∗)| ≤ O∗(
√
n) (53)

for all αlb � α � αub.

Recall that ν∗kq = Dkq(α
∗
kq;α

∗) = Skq(α
∗
kq;α

∗) and E[Ŝkq(α
∗
kq;α

∗)] = nSkq(α
∗
kq;α

∗). A

Chernoff bound gives that, with high probability,

|Ŝkq(α∗kq;α∗)− nν∗kq| ≤ O∗(
√
n) . (54)
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Combining Eqs. (53) and (54) yields

|Ŝkq(αkq;α)− nν∗kq| ≤ O∗(
√
n) , (55)

for all αlb � α � αub.

The proof of the corresponding bound on D̂kq(αkq;α) is analogous.

Proof of Claim 5. Having found a core solution α (the fixed point of Tn) that moreover satisfies

αlb � α � αub, we now use these bounds on α to control the size of the core.

Recall that there is (with probability 1) a unique8 maximum-weight matching M . We focus

on a subset of agents S that are of type k and either matched to type q or unmatched under M .

We show that, w.h.p., the largest value of ηqi among i ∈ S\M is within C log n/n of the smallest

value of ηqi among i ∈ S ∩M , yielding the desired bound on |αmax
kq − αmin

kq |.

Define

S = {i : τ(i) = k, ηq
′

i < α∗kq′ − g(n)− u(k, q′) ∀ q′ 6= q}. (56)

If α � αlb (which holds w.h.p.), we know that no agent in S is matched to q′ 6= q. Now, we get

that the likelihood of an agent being in S is

ρk
∏
q′ 6=q

F (α∗kq′ − g(n)− u(k, q′)) ≥ 0.9ρk
∏
q′ 6=q

F (α∗kq′ − u(k, q′))

for large enough n, using continuity of F and limn→∞ g(n) = 0. (Note that we do not need to

reveal ηqi to compute whether i ∈ S.) Now divide [α∗kq − u(k, q) − 2g(n), α∗kq − u(k, q) + 2g(n)]

into intervals of length ∆ = (C/3) log n/n, where

C = 4
/

min
k,q

[
ρkf(α∗kq − u(k, q))

∏
q′ 6=q

F (α∗kq′ − u(k, q′))
]
.

8We do not need uniqueness of M to bound the core size, but we use it to simplify the argument.
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Using continuity of f(·), we have that

inf
x∈[α∗kq−u(k,q)−2g(n),α∗kq−u(k,q)+2g(n)]

f(x) ≥ 0.9f(α∗kq − u(k, q)) .

Using the previous three equations, and independence between membership in a subinterval

and membership in S, it follows that the number of agents in S who belong to any individual

subinterval is Binomial(n, p1) for

p1 ≥ ∆ · 0.9f(α∗kq − u(k, q)) · 0.9ρk
∏
q′ 6=q

F (α∗kq′ − u(k, q′)) ≥ log n/n ,

and hence each subinterval has at least one agent in S with probability at least 1 − 1/n. We

deduce using a union bound that w.h.p., all subintervals have at least one member of S. Now,

in any core solution, each i such that ηi < αkq − u(k, q) must remain unmatched, and ηi >

αkq − u(k, q) must be matched to type q. Furthermore, we have that w.h.p., αkq ∈ (α∗kq −

g(n), α∗kq+g(n)). Considering the subintervals on each side of the one in which αkq occurs, since

each of them has at least one agent (who also belongs to S), and considering that M is unique,

we deduce that

|αmax
kq − αmin

kq | ≤ 3∆ = C
log n

n
.

Using a union bound, we deduce that w.h.p., this holds simultaneously for all k, q.

G Proof of Lemma 2

Proof of Lemma 2. Let (M,α) be a core solution. Suppose that αk∗q∗ = maxk,q αkq. Consider

worker type q∗. Since αk∗q∗ ≥ αkq∗ for all k 6= k∗, we obtain that each agent i of type q∗ has

likelihood at least 1/K of counting toward Ŝk∗q∗ = Ŝk∗q∗(αk∗q∗ ;α); see Eq. (46). We have that

w.h.p., Ŝk∗q∗ ≥ (# agents of type q∗)/K − O∗(
√
n) > Cn/2, using Assumption 2. At prices α,

an agent of type k∗ prefers being unmatched to matching with type q∗ with likelihood F (αk∗q∗−

u(k∗, q∗)). Hence, w.h.p., we have D̂k∗q∗ = D̂k∗q∗(αk∗q∗ ;α) < (number of agents of type k∗)(1−

F (αk∗q∗ − u(k∗, q∗))) + O∗(
√
n) ≤ n(1 − F (αk∗q∗ − u(k∗, q∗))) + O∗(

√
n) < Cn/2 if αk∗q∗ > U
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for some U < ∞. (Here we used that limP→∞ 1 − F (P − u(k∗, q∗)) = 0.) But D̂k∗q∗ = Ŝk∗q∗ ,

a contradiction. It follows that αk∗q∗ ≤ U , and hence αkq ≤ U for all k, q. The lower bound of

−U ≤ αkq can be similarly established.
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