
Proofs and additional results

In the following appendices we provide proofs of Theorem 2 (Appendix EC.2) and Theorem 3

(Appendix EC.3), and also obtain tight results using our methods in the setting of Akbarpour

et al. (2014) (Appendix EC.4).

EC.1. Preliminary results

We first state a number of propositions and lemmas that will enable our proof of 2.

We begin by stating (without proof) the following version of the classical Chernoff bound (see,

e.g., Alon and Spencer 2008).

Proposition EC.1 (Chernoff bound). Let Xi ∈ {0,1} be independent with P(Xi = 1) = pi for

1≤ i≤ n. Let µ=
∑n

i=1 pi.

(i) For any δ ∈ [0,1] we have

P(|X −µ| ≥ µδ)≤ 2exp{−δ2µ/3}. (EC.1)

(ii) For any R> 6µ we have

P(X ≥R)≤ 2−R. (EC.2)

Next, we state a result that is based on the Lyapunov function technique. Given an irreducible

aperiodic Markov chain {Xk} on a countable statespace X , suppose there exists a nonnegative

function V : X →R+ that admits the following decomposition:

V (Xk+1) = V (Xk) +Ak−Dk, (EC.3)

where Ak ≥ 0 is an i.i.d. sequence such that Ak is independent of state Xk, while Dk ≥ 0 is a

random function of Xk and Ak, that does not depend on k directly. Ak and Dk are interpreted

as the number of arrivals and departures in the time period of length k, respectively. Assume in

addition that B(α), {x ∈X | V (x)≤ α} ⊂X is finite for every α. Note that as V (x)≥ 0, we have

that Dk ≤ V (x) +Ak a.s.

ec1
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Proposition EC.2. Suppose E[A2
k] is finite and C1 satisfies E[A2

k]≤C1E[Ak]
2 <∞. Suppose there

exist α,λ,C2 > 0 such that for every x /∈B(α),

E
[
Ak− D̃k|Xk = x

]
≤−λE[Ak], (EC.4)

where D̃k is defined to be min{Dk,C2Ak}. Then Xk is positive recurrent with the unique stationary

distribution X∞ and

E[V (X∞)]≤max

{
α,

max{1,C2− 1}2C1

λ
E[Ak]

}(
2 +

2

λ

)
.

The reason for introducing a truncated downward jump process D̃k as opposed to using just

Dk is that in general the statement of the proposition is not true. Namely, there exists a process

such that the assumptions of the proposition above hold true when Dk replaces D̃k in (EC.4) and

E[V (X∞)] =∞, as shown in Example EC.1 at the end of this section.

Proposition EC.2 is obtained as a corollary of Proposition EC.3 and Proposition EC.4 below.

Suppose that {Xk} is a discrete-time irreducible Markov chain on a countable state space X .

First we give a condition for the positive recurrence of {Xk} due to Foster (1953); see Asmussen

(2003) for a contemporary reference. Recall that Ex denotes the expectation operator conditional

on X0 = x.

Proposition EC.3 (Foster 1953). If there exists a function V : X →R, γ > 0, and a finite set

B ⊂X such that for all x∈B,

Ex[V (X1)−V (X0)]<∞, (EC.5)

and for all x∈X \B,

Ex[V (X1)−V (X0)]≤−γ,

then {Xk} is positive recurrent.

Now, suppose that {Xk} is ergodic (irreducible, with all states being positive recurrent and aperi-

odic), and let X∞ denote the unique steady-state distribution. We now give a bound on the first

moment of f(X∞) for any function f . The result below is from Anderson (2014) but is similar to

Gamarnik and Zeevi (2006) and Glynn et al. (2008).
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Proposition EC.4 (Anderson 2014). Suppose that Xt is ergodic, and that there exist α,β, γ >

0, a set B ⊂X , and functions U : X →R+ and f : X →R+ such that for x∈X \B,

Ex[U(X1)−U(X0)]≤−γf(x), (EC.6)

and for x∈B,

f(x)≤ α, (EC.7)

Ex[U(X1)−U(X0)]≤ β. (EC.8)

Then

E[f(X∞)]≤ α+
β

γ
.

Note that we need not assume that B is bounded. Finally, we can prove the specialization of the

above results as used in the paper.

Proof of Proposition EC.2. First, we apply Proposition EC.3 to Xk using the same V (x), B,

and γ = λE[Ak] as in the statement of Proposition EC.2. For x 6∈ B, we have

Ex[V (X1)−V (X0)] =Ex[A0−D0]≤Ex
[
A0− D̃0

]
≤−λEx[A0] =−γ,

where in the inequalities we use D̃k ≤Dk and then (EC.4). For all x, we have

Ex[V (X1)−V (X0)] =Ex[A0−D0]≤Ex[A0]<∞.

Thus as B is bounded, we can apply Proposition EC.3 to obtain positive recurrence of Xk. By

assumption, Xk is irreducible and aperiodic. Hence, Xk is ergodic. Let X∞ be the steady-state

version of the Markov chain Xk.

Next, we apply Proposition EC.4 by taking U(x) = V 2(x) and f(x) = V (x). We let

α′ = max

{
α,

max{1,C2− 1}2C1

λ
E[Ak]

}
, (EC.9)
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thus making our set of exceptions from Proposition EC.4 B′ = {x ∈ X | V (x) ≤ α′}. We have for

x∈B′ that

Ex[U(X1)−U(X0)] =Ex
[
(V (X0) +A0−D0)2−V (X0)2

]
(EC.10)

≤Ex
[
(V (X0) +A0)2−V (X0)2

]
(EC.11)

= 2V (x)E[A0] +E[A2
0]

≤ 2α′E[A0] +C1E[A0]2 (EC.12)

≤ 2α′E[A0] +α′λE[A0] (EC.13)

= α′(2 +λ)E[A0]

∆
= β′ (EC.14)

where (EC.10) follows from (EC.3), (EC.11) follows as V (X1) ≥ 0, (EC.12) follows from (EC.9)

and the definition of C1, and (EC.13) follows again from (EC.9) and as max{1,C2 − 1}2 ≥ 1 by

definition. For x 6∈ B′, we have that

Ex[U(X1)−U(X0)] =Ex
[
(V (X0) +A0−D0)2−V (X0)2

]
(EC.15)

≤Ex
[
(V (X0) +A0− D̃0)2−V (X0)2

]
(EC.16)

= 2V (x)Ex[A0− D̃0] +Ex
[
(A0− D̃0)2

]
≤−2V (x)λE[A0] +E

[
max{1,C2− 1}2A2

0

]
(EC.17)

≤−(V (x) +α′)λEx[A0] + max{1,C2− 1}2C1E [A0]
2

(EC.18)

≤−(V (x) +α′)λEx[A0] +α′λE [A0] (EC.19)

=−V (x)λEx[A0],

where (EC.15) follows from (EC.3), (EC.16) follows as V (X1)≥ 0 and D̃0 ≤D0, (EC.17) follows

from (EC.4) and as D̃k ≤C2Ak a.s. implies that |Ak−Dk| ≤max{1,C2−1}Ak a.s., (EC.18) follows

from (EC.9) and the definition of C1, and finally (EC.19) follows again from (EC.9). Thus by taking

γ′ = λEx[A0], we can now apply Proposition EC.4 with α′, β′, and γ′ to obtain that

E[V (∞)]≤ α′+ β′

γ′
= α′+

α′(2 +λ)E[A0]

λE[A0]
= α′

(
1 +

2 +λ

λ

)
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= max

{
α,

max{1,C2− 1}2C2

λ
E[Ak]

}(
1 +

2 +λ

λ

)

showing the result. �

Last, we give a quick counterexample showing that without some assumptions beyond simply

having a negative drift, we may not even have a finite first moment.

Example EC.1. Consider the following random walk Xt on the nonnegative integers parametrized

by some γ ∈ (0,1). From state 0, we always go up to state 1. For every other state k= 1,2, . . ., with

probability (1 + γ)/(k+ 1), we go to state 0, and with the remaining probability, (k− γ)/(k+ 1),

we go up to state k+ 1. This walk has the property that for all k≥ 1,

Ek[X1−X0] = (k+ 1) · k− γ
k+ 1

+ 0 · 1 + γ

k+ 1
− k=−γ,

and thus is positive recurrent and has some stationary distribution πk = P(X∞ = k). However, we

will show that E[X∞] =∞. A direct computation of the steady-state equations gives that π0 = π1,

and for n≥ 2,

πn =
n− γ
n+ 1

πn−1 = π0

n∏
k=2

k− γ
k+ 1

=
π0

Γ(2− γ)

Γ(n+ 1− γ)

Γ(n+ 2)
,

where Γ is the gamma function. Using the identity

lim
n→∞

Γ(n+α)

Γ(n)nα
= 1

for all α∈R, we have that

πn = Θ

(
1

n1+γ

)
.

Thus there exists c > 0 and `∈Z+ such that

E[X∞] =
∞∑
n=0

nπn ≥
∞∑
n=`

c

nγ
=∞,

showing the claim. �
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EC.2. Proof of Theorem 2

We prove the lower bound in Theorem 2 for the class of monotone policies that includes batching

policies as a special case.

Let G denote the global compatibility graph that includes all nodes that ever arrive to the system,

and directed edges representing compatibilities between them.

Definition EC.1 (Monotone policy). A deterministic policy (under either chain removal or

cycle removal) is said to be monotone if it satisfies the following property: consider any pair of

nodes (i, j) and an arbitrary global compatibility graph G such that the edge (i, j) is present. Let Ḡ

be the graph obtained from G when edge (i, j) is removed. Let Ti and Tj be the times of the removal

of nodes i and j respectively when the compatibility graph is G and let Tij = min(Ti, Tj). Then the

policy must act in an identical fashion on Ḡ and G for all t < Tij; i.e., the same cycles/chains are

removed at the same times in each case, up to time Tij. This property must hold for every pair of

nodes (i, j) and every possible G containing the edge (i, j).

A randomized policy is said to be monotone if it randomizes between deterministic monotone

policies.

Remark EC.1. Consider the greedy policy for cycle removal defined above. It is easy to see that

we can suitably couple the execution of the greedy policy on different global compatibility graphs

such that the resulting policy is monotone. The same applies to a batching policy that matches

periodically (after arrival of x nodes), by finding a maximum packing of node disjoint cycles and

removing them. (Note that such a policy is periodic Markov with a period equal to the batch size.)

Note that the class of monotone policies includes a variety of policies in addition to simple

batching policies. For instance, a policy that assigns weights to nodes and finds an allocation with

maximum weight (instead of simply maximizing the number of nodes matched) is also monotone.

Before proving Theorem 2, we need a couple of results. Next we state a straightforward combina-

torial bound: in a directed graph, a set M of node disjoint three-way cycles is said to be maximal

if no three-way cycle can be added to M such that the set remains node disjoint.
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Proposition EC.5. Given an arbitrary directed graph G, let N be the number of three-way cycles

in a maximum (i.e., largest in cardinality) set of node disjoint three-way cycles in G. Then, any

maximal set of node disjoint three-way cycles consists of at least N/3 three-way cycles.

Proof. We prove the result by contradiction. Assume that a maximal set of node disjoint three-

way cycles W contains fewer than N/3 three-way cycles. Then there must be a three-way cycle X

from a largest set of node disjoint three-way cycles such that for every three-way cycle Y ∈W, X

and Y have no nodes in common. This yields a contradiction, as we could then add X to W to

make a larger set of node disjoint three-way cycles, thus making W not maximal. �

Let Gt denote the global compatibility graph that includes all nodes that ever arrive to the system

up to time t, and all directed edges representing compatibilities between them. Denote by Wt the

set of nodes out of 0,1, . . . , t still present in the system at time t. The following is a key property

of monotone policies:

Lemma EC.1. Under any monotone policy, for every two nodes i, j arriving before time t (namely,

i, j ≤ t) and every subset of nodes W ⊂{0,1, . . . , t} containing nodes i and j,

P((i, j)∈ Gt|Wt =W)≤ p.

In words, pairs of nodes still present in the system at time t are no more likely to be connected at

time t than at the time they arrived.

Proof. We assume that the removal policy is deterministic. The proof for the case of randomized

policies follows immediately. Fix any two nodes i, j that arrive before time t (namely, i, j ≤ t).

Given any directed graph G on nodes 0,1, . . . , t (that is, nodes arriving up to time t) such that

the edge (i, j) belongs to G, denote by Ḡ the same graph G with edge (i, j) deleted. Let W be

any subset of nodes 0,1, . . . , t containing i and j. Recall that we denote by Gt the directed graph

generated by nodes 0,1, . . . , t and by Wt the set of nodes observed at time t. Note that, since the

policy is deterministic, graph Gt uniquely determines the set of nodes Wt.
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We have

P(Wt =W) =
∑
G

P(G) +
∑
G

P(Ḡ),

where the first sum is over graphs G containing edge (i, j) such that the set of nodes observed at

time t is W when Gt = G, and the second sum is over graphs G containing edge (i, j), such that

when Gt = Ḡ, the set of nodes observed at time t is W. Note, however, that by our monotonicity

assumption, if Gt = G implies Wt =W, then Gt = Ḡ also implies that Wt =W. Thus

P(Wt =W)≥
∑
G

(P(G) +P(Ḡ)),

where the sum is over graphs G containing edge (i, j) such that Gt = G implies that Wt =W. At

the same time note that P(Ḡ) = P(G)(1− p)/p since it corresponds to the same graph except that

edge (i, j) is deleted. We obtain

P(Wt =W)≥
∑
G

P(G)(1 + (1− p)/p) =
∑
G

P(G)/p.

We recognize the right-hand side as P(Wt =W|(i, j)∈ Gt). Now we obtain

P((i, j)∈ Gt|Wt =W) = P(Wt =W|(i, j)∈ Gt)P((i, j)∈ Gt)/P(Wt =W)

≤ P((i, j)∈ Gt)

≤ p,

and the claim is established. �

The following corollary follows immediately by linearity of expectations.

Corollary EC.1. Let Wt = |Wt| and let Et be the number of edges between nodes in Wt. Then,

under a monotone policy, E[Et|Wt]≤Wt(Wt− 1)p.

Proof of Theorem 2: Upper bound for the greedy policy

Proof of Theorem 2: The performance of the greedy policy. Suppose that at time zero we

observe W ≥ C3/p3/2 nodes in the system with an arbitrary set of edges between them. Here C
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is a sufficiently large constant to be fixed later. Call this set of nodes W. Consider the next T =

1/(Cp3/2) arrivals, and call this set of nodes A. Without loss of generality label the times of these

arrivals as 1,2, . . . , T , and use the label t for the node that arrives at time t. Let At ⊆ {1,2, . . . , t−1}

be the subset of nodes in A that have arrived but have not been removed before time t. Similarly,

define Wt to be the set of nodes from W that are still in the system immediately before time t.

Note that, in particular, W1 =W.

Let N be the number of three-way cycles removed during the time period [0, T ], that include

two nodes from W. These are “good” three-way cycles (helping us obtain a negative drift). Let

κ= 1/C2 and consider the event

E1 ≡ {|AT+1| −N ≥ 2κ/p3/2}. (EC.20)

Thus, E1 is a “bad” event corresponding to many of the new arrivals still being in the system at

the end of T periods, leading to large |AT+1|. We discount |AT+1| by the number of good three-way

cycles N .

Introduce the event

E2 ≡ {There exists a set of disjoint two- and three-way cycles in A

with cardinality at least 3/(C3p3/2) }. (EC.21)

Event E2 is a “bad” event under which it is possible that many nodes in A depart due to cycles

containing only other nodes from A, and hence do not help with clearing any of the nodes in W.

We now show that if neither of these bad events occurs, then the number of nodes in the system

decreases by at least 3/(8Cp3/2) in expectation. The rest of the proof will then focus on showing

that each of these events occurs with a small probability.

First suppose that the event E1 does not occur. Then

|AT+1| ≤
2

C2p3/2
+N ≤ 1

16Cp3/2
+N , (EC.22)
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for C sufficiently large. Also, event Ec2 implies that (again for C sufficiently large) at most

9/(C3p3/2) ≤ 1/(16Cp3/2) nodes in A leave due to internal three-way cycles or two-way cycles.

Since T = 1/(Cp
3
2 ), it follows that by Eq. (EC.22), at least 7/(8Cp3/2)−N other nodes in A also

leave before T + 1. These other nodes belong to cycles of one of the following types:

(i) A three-way cycle containing another node from A and a node from W.

(ii) A two-way cycle with a node from W.

(iii) A three-way cycle containing two nodes from W. There are exactly N nodes of this type.

Exactly N nodes in A are removed due to cycles of type (iii) above, so from which we infer that

at least 7/(8Cp3/2)− 2N nodes in A are removed due to cycles of type (i) or (ii) above, meaning

that at least (1/2)(7/(8Cp3/2)− 2N) nodes in W are removed as part of such cycles. Clearly, 2N

nodes in W are removed as part of cycles of type (iii).

It follows that

|WT+1| ≤ |W|− 2N − 1

2

(
7

8Cp3/2
− 2N

)
≤ |W|− 7

16Cp3/2
−N . (EC.23)

Combining Eqs. (EC.22) and (EC.23), we deduce that

|WT+1|+ |AT+1| ≤ |W|−
3

8Cp3/2
. (EC.24)

We also have that the number of nodes in the system increases by at most T = 1/(Cp3/2). We will

show that P(E1 ∪E2)≤ ε= 1/9. Before establishing this claim we show how this claim implies the

result. We have

E[|WT+1|+ |AT+1| − |W|]≤ εT − (1− ε) 3

8Cp3/2
=− 2

9Cp3/2
; (EC.25)

i.e., the number of nodes decreases by at least 2/(9Cp3/2) in expectation. We now apply Proposition

EC.2 to the embedded Markov chain observed at times that are multiples of T . Namely, let Ti = i ·T ,

and take Xi = G(Ti) = (V(Ti),E(Ti)) and define V (Xi) = |V(Ti)|. If we let Di be the set of nodes

that are deleted in some cycle during the time interval [Ti, Ti+1), we obtain a decomposition

V (Xi+1) = |V(Ti+1)|= |V(Ti)|+T − |Di|= V (Xi) +T − |Di|. (EC.26)
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Since T > 0 is deterministic it is trivially independent of G(Ti). Thus the assumptions on decom-

posing V from (EC.3) are satisfied. The assumption that {G | V (G) < n} is finite for every n is

satisfied as there are only finitely many graphs with n nodes. We take α = C3/p3/2, leading to

B = {G | |V(G)| ≤ C3/p3/2}. We can take C1 = 1 as T is deterministic. We can take C2 = 3, as

trivially |Di| ≤ 3T since each newly arriving node can be in at most one three-way cycle (and hence

D̃k =Dk in Proposition EC.2). Finally, we can take λ= 2/9, as by (EC.25),

E[T − |Di|]≤−
2

9Cp3/2
=−2

9
E[T ].

Thus, by applying Proposition EC.2, we obtain that

E[|V(T∞)|]≤max

{
α,

max{1,C2− 1}2C1

λ
E[Ak]

}(
2 +

2

λ

)
= max

{
C3

p3/2
,

4

2/9

1

Cp3/2

}(
2 +

2

2/9

)
=

11C3

p3/2
,

for C sufficiently large. Finally, since the embedded chain is observed over deterministic time

intervals, the bound above applies to the steady-state bound. We conclude that

E[|V(∞)|]≤ 11C3

p3/2
.

It remains to bound P(E1) and P(E2) to complete the proof. We do this below. We claim that

P(E2)≤ ε/4. We first show that there is likely to be a maximal set of node disjoint three-way cycles

in A of size less than 2/(3C3p3/2). This will imply, using Proposition EC.5, that the maximum

number of node disjoint three-way cycles in A is at most 2/(C3p3/2). Reveal the graph on A and

simultaneously construct a maximal set of node disjoint three-way cycles as follows. Reveal node 1.

Then reveal node 2. Then reveal node 3 and whether it forms a three-way cycle with the existing

nodes. If it does remove this three-way cycle. Continuing this way, at any stage t if a three-way

cycle is formed, choose uniformly at random such a three-way cycle and remove it.

Since this process corresponds to a monotone policy (see Definition EC.1), it follows from Corol-

lary EC.1 that the residual graph immediately before step t contains no more than 2
(
t−1

2

)
p edges in
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expectation, as the number of nodes is no more than t−1. It follows that the conditional probabil-

ity of three-way cycle formation at step t is no more than E[Number of three-way cycles formed] =

2
(
t−1

2

)
p3. It follows that we can set up a coupling such that the total number of three-way cycles

removed (this is a maximal set of edge disjoint three-way cycles resulting from our particular

greedy policy) is no more than Z =
∑T

t=1Xt, where Xt ∼Bernoulli(2
(
t−1

2

)
p3) are independent. Now

E[Z] = 2
(
T
3

)
p3 ≤ 1/(3C3p3/2). Using Proposition EC.1 (i), we obtain that P(Z ≥ 2/(3C3p3/2))< ε/8,

for large enough p, establishing the desired bound on the number of node disjoint three-way cycles.

We have shown that the probability of having more than 2/(C3p3/2) node disjoint three-way cycles

in A is less than ε/8.

Let Z ′ be the number of two-way cycles internal to A. Then Z ′ ∼ Bin(
(
T
2

)
, p2). Hence, E[Z ′]≤

1/(C2p) and P(Z ′ ≥ 1/(C3p3/2))≤ ε/8 for sufficiently small p using Proposition EC.1 (ii). It follows

that the probability of having more than 1/(C3p3/2) node disjoint two-way cycles in A is less than

ε/8. Now P(E2)≤ ε/4 follows by union bound.

We now show P(E1)≤ 3ε/4. To prove this, we find it convenient to define two additional events.

Denote by N (S1,S2) the (directed) neighborhood of the nodes in S1 in the set of nodes S2, i.e.,

N (S1,S2) = {j ∈ S2 : ∃i ∈ S1 s.t. (i, j) ∈ E}. Abusing notation, we use N (i,S) to denote the neigh-

borhood of node i in S. Further, we find it convenient to define Bt =N (t,At). Define

E3,t ≡ {|At| ≥ κ/p3/2, and |Bt|<κ/(2p1/2)}, (EC.27)

and E3 = ∪0≤t≤TE3,t. Thus, E3 is the “bad” event that at some time t, the set At of arrivals that

has not yet departed is “large” and yet the arrival at time t forms much fewer edges with At than

expected. We will show that E3 is unlikely. Define

E4,t ≡ {|At| ≥ κ/p3/2, and |N (Bt,Wt)|<C3κ/(8p)}, (EC.28)

and let E4 = ∪0≤t≤TE4,t. Thus, E4 is the “bad” event that at some time t, the set At of arrivals

that has not yet departed is “large” and yet the arrival at time t reaches fewer than the expected

number of nodes in Wt in two-hops via a node in At. We will show that E4 is unlikely if E3 does
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not occur. We will also show that if E4 does not occur, this ensures that the event E1 (which we

are trying to control) is unlikely to occur, since if |At| ≥ κ/p3/2, then the next new arrival is likely

to be removed in a three-way cycle (We will show that a three-way cycle of type (i) is likely to be

formed. If such a three-way cycle is executed then |At+1|= |At| − 1; otherwise if a three-way cycle

of type (iii) is executed then that leads to Nt+1 = Nt + 1, where Nt is the number of three-way

cycles of type (iii) executed before time t. In either case, |At+1|−Nt+1 = (|At|−Nt− 1). In words,

this implies that (|At| −Nt is pushed downwards in expectation whenever it exceeds κ/p3/2.) We

make use of

E1 ⊆ (Ec4 ∩E1)∪E4 ⊆ (Ec4 ∩E1)∪E3 ∪ (E4 ∩Ec3)

⇒ P(E1) ≤ P(Ec4 ∩E1) +P(E3) +P(E4 ∩Ec3).

Reveal the edges between t and At when node t arrives. The existence of each edge is independent

of the other edges and the current revealed graph. Thus we can bound the probability of the event

E3,t using Proposition EC.1 (i) by 2 exp(−1/(12C2p1/2)) for large enough C. It follows that for

sufficiently small p, we have

P(E3)≤ 2T exp(−1/(12C2p1/2))≤ ε/4 . (EC.29)

We now bound P(Ec4∩E1). Let Nt be the number of three-way cycles removed before time t of type

(iii) (recall that three-way cycles of type (iii) include two nodes from W). Define Zt ≡ |At| −Nt.

Define

E5,t ≡ {Node t is immediately part of a three-way cycle of type (i)} .

Assume that three-way cycles are given priority over two-way cycles. Note that:

• If E5,t then |At+1| = |At| − 1,Nt+1 = Nt if such a three-way cycle is removed and |At+1| =

|At|,Nt+1 = Nt + 1 if a three-way cycle of type (iii) is removed instead. In either case, we have

Zt+1 = Zt − 1. If a three-way cycle consisting of nodes from A is removed then we have |At+1|=

|At| − 2,Nt+1 =Nt + 1, i.e., Zt+1 =Zt− 2. Overall, Zt+1 ≤Zt− 1 in any of these cases.



ec14 e-companion to Anderson et al.: Efficient Dynamic Barter Exchange

• With probability one we have |At+1| ≤ |At|+ 1 and Nt+1 ≥Nt. It follows that Zt+1 ≤Zt + 1.

Now suppose that Zt ≥ κ/p3/2 and Ec4,t. Clearly Zt ≥ κ/p3/2 ⇒ |At| ≥ κ/p3/2 and hence Ec4,t ⇒

|N (Bt,Wt)| ≥C3κ/(8p) =C/(8p). Revealing the edges between from N (Bt,Wt) to t, we see that

P(E5,t|Zt ≥ κ/p3/2,Ec4,t)≥ 1− (1− p)C/(4p) ≥ 3/4 , (EC.30)

for large enough C and small enough p, independent of everything so far. Hence, informally, if Ec4,t

then Zt is bounded above by a random walk with a downward drift whenever Zt ≥ κ/p3/2. We now

formalize this.

Define the random walk (Z̃t)t≥1 as follows. Let Z̃1 = 0. Whenever Z̃t = 0, we have Z̃t+1 = 1;

otherwise

Z̃t+1 =


Z̃t + 1 with probability 1/4

Z̃t− 1 with probability 3/4

(EC.31)

Hence (Z̃t)
T+1
t=1 is a downward biased random walk reflected upwards at 0.

Proposition EC.6. There exists C <∞ such that for any T ∈ N and ν > 0, we have P(Z̃T+1 ≥

ν)≤CT exp(−ν/C).

The proof is omitted, as this is a standard result for random walks with a negative drift. Using

Proposition EC.6, we have that for sufficiently small p,

P(Z̃T+1 ≥ κ/(2p3/2))≤ ε/4 .

Let τ be the first time at which event E4,t occurs for t≤ T , and let τ = T +1 if E4 does not occur.

We now show that the following claim holds:

Claim EC.1. We can couple Zt and Z̃t such that for all t < τ , whenever Zt ≥ κ/p3/2 we have

Z̃t+1− Z̃t ≥Zt+1−Zt.

Proof of Claim. If E5,t occurs, then (see above) we know that Zt+1 =Zt−1 and Z̃t+1− Z̃t ≥−1

holds by definition of Z̃. Hence, it is sufficient to ensure that Z̃t+1 = Z̃t + 1 whenever Ec5,t occurs.

But this is easy to satisfy since Eq. (EC.30) implies that

P(Ec5,t|Zt ≥ κ/p3/2,Ec4,t)≤ 1/4 ,

whereas P(Z̃t+1 = Z̃t + 1) = 1/4. This completes the proof of the claim. �
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The following claim is an immediate consequence.

Claim EC.2. We have Zt ≤ Z̃t + dκ/p3/2e for all t≤ τ .

Proof of Claim. The claim follows from Claim EC.1 and a simple induction argument. �

It follows that

P(ZT+1 ≥ 2κ/p3/2, τ = T + 1)≤ P(Z̃T+1 ≥ κ/p3/2, τ = T + 1)

≤ P(Z̃T+1 ≥ κ/p3/2)

≤ ε/4 .

Thus we obtain

P(Ec4 ∩E1)≤ ε/4 . (EC.32)

Finally, we bound P(E4∩Ec3). For any S ⊆A, letW∼S ⊆W be the set of waiting nodes that would

have been removed before T + 1 if (hypothetically) the nodes in S had had no incident edges in

either direction, but we had left all other compatibilities unchanged. Define the event E6 as follows:

for all S ⊆A such that |S|= κ/(2p1/2), the bound

|N (S,W\W∼S)| ≥C/(8p) (EC.33)

holds.

Claim EC.3. The event E6 occurs with high probability.

Before proving the claim, we show that it implies that P(E4 ∩Ec3)≤ ε/4. Suppose that E6 and Ec3

occur. Consider any t such that |At| ≥ κ/p3/2. Since Ec3 , we have that |Bt| ≥ κ/(2p1/2). Take any

S ⊆Bt such that |S|= κ/(2p1/2). Notice that for our monotone greedy policy (see Remark EC.1) the

set of waiting nodes that are removed before time t must be a subset ofW∼S ; i.e., we have we have

that Wt ⊇W\W∼S . Since E6 occurs, it follows that |N (S,Wt)| ≥C/(8p)⇒ |N (Bt,Wt)| ≥C/(8p).

Thus we have Ec4 . This argument establishes that

E6 ∩Ec3 ⊆Ec4 ∩Ec3

⇒ Ec6 ∩Ec3 ⊇E4 ∩Ec3 .

It follows that P(E4 ∩Ec3)≤ P(Ec6 ∩Ec3)≤ P(Ec6)≤ ε/4 using Claim EC.3, as required.



ec16 e-companion to Anderson et al.: Efficient Dynamic Barter Exchange

Proof of Claim EC.3. Consider any S ⊆A such that |S|= κ/(2p1/2). Clearly, since each node

in A can eliminate at most 2 nodes in W, we have that |W∼S | ≤ 2|A\S| ≤ 2|A| = 2/(Cp3/2). It

follows that |W\W∼S | ≥C3/p3/2− 2/(Cp3/2)≥C3/(2p3/2) for large enough C. Now notice that by

definition W∼S is a function of only the edges between nodes in W∪ (A\S), and is independent of

the edges coming out of S. Thus, for each node i∈W\W∼S independently, we have that each node

in S has an edge to i independently with probability p. We deduce that i ∈ N (S,W\W∼S) with

probability 1− (1− p)κ/(2p1/2) ≥ κp1/2/3 for small enough p, i.i.d. for each i ∈W\W∼S . It follows

from Proposition EC.1 (i) that

|N (S,W\W∼S)| < C3

2p3/2
· κp

1/2

3
· 3
4

=
κC3

8p
=

C

8p

occurs with probability at most 2 exp
{
−(1/4)2 ·C/(6p) ·(1/3)

}
≤ exp(−C/(300p)) for small enough

p. Now, the number of candidate subsets S is
(1/(Cp3/2)

κ/p1/2

)
≤ (1/(Cp3/2))κ/p

1/2 ≤ exp(1/pε+1/2) for

small enough p. It follows from union bound that |N (S,W\W∼S)|< C
8p

for one (or more) of these

subsets S with probability at most exp(−C/(300p)) ·exp(1/pε+1/2)≤ exp(−C/(400p))
p→0−−→ 0. Thus,

with high probability, |N (S,W\W∼S)|< C
8p

occurs for no candidate subset S; i.e., event E6 occurs

with high probability. �

Proof of Theorem 2: Lower bound

Proof of Theorem 2: Lower bound for monotone policies. Denote by m the expected steady-

state number of nodes in the system, which by Little’s law equals the expected steady-state waiting

time. Suppose that m≤ 1/(Cp3/2), where C is any constant larger than 36. Fix a node i, and reveal

the number of nodes N in the system when i arrives. Notice that N ≤ 3m occurs with probability

at least 1− 1/3 = 2/3 in steady-state by Markov’s inequality. Assume that N ≤ 3m holds. Let W

denote the nodes waiting in the system when i arrives (note that |W|=N), and let A be the nodes

that arrive in the next 3m time slots after node i arrives. Now, if node i leaves the system within

3m time slots of arriving, then i must form a two- or three-way cycle with nodes in A∪W. The

probability of forming such a cycle is bounded above by

E[Number of two-way cycles between i and A∪W|N ] (EC.34)

+E[Number of three-way cycles containing i and two nodes from A∪W|N ] . (EC.35)
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Clearly,

E[Number of two-way cycles between i and A∪W|N ]≤ 6mp2 ≤ 1/C (EC.36)

for p sufficiently small. To bound the other term we notice that

E[Number of three-way cycles containing i and two nodes from A∪W|N ]

= p2 ·E[Number of edges between nodes in A∪W|N ] . (EC.37)

We use Corollary EC.1 to bound the expected number of edges between nodes in W at the time

when i arrives by N(N − 1)p and notice that other compatibilities (j1, j2) for {j1, j2} 6⊆ W are

present independently with probability p. Hence, we have

E[Number of edges between nodes in A∪W|N ]≤ |W ∪A|(|W ∪A|− 1)p≤ 6m(6m− 1)p .

Using Eq. (EC.37) we infer that

E[Number of three-way cycles containing i and two nodes from A∪W|N ]

≤ 6m(6m− 1)p3 ≤ 36/C2 ≤ 1/C (EC.38)

for C > 36. Using Eqs. (EC.36) and (EC.38) in (EC.35), we deduce that the probability of node i

being removed within 3m slots is no more than 2/C.

Combining, we get that the unconditional probability that node i stays in the system for more

than 3m slots is at least (2/3)(1−2/C)> 1/3 for large enough C. This violates Markov’s inequality,

implying that our assumption, m≤ 1/(Cp3/2), is false. This establishes the stated lower bound. �

EC.3. Proof of Theorem 3

Preliminaries. Before proving the main theorem we need some preparation. We begin by

stating a result on long chains in a static Erdős–Rényi random graph. The following result was

first shown by Ajtai et al. (1981) and refined in a series of papers; see Krivelevich et al. (2013) for

a historical account and the tightest result.
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Proposition EC.7 (Krivelevich et al. 2013). Fix any ε > 0 and any δ > 0. There exist C and

n0 such that for all c > C and all n > n0 the following occurs: consider an ER(n, c/n) directed

graph G = (V,E), and let D be the length of the longest directed cycle. We have,

P(D> (1− (2 + δ)ce−c)n)> 1− ε .

In words, (for large c) we have a cycle containing a large fraction of the nodes with high probability.

From this, we can easily obtain a similar result about the longest path starting from a specific

node.

Corollary EC.2. Fix any ε > 0. There exists C <∞ and n0 such that for all c > C and all

n > n0 the following occurs: consider a set V of n vertices including a fixed node v ∈ V, and draw

an ER(n, c/n) directed graph G = (V,E). Let Pv denote the length of a longest path starting at v.

Then

P(Pv <n(1− ε))≤ ε.

The proof follows relatively easily from Proposition EC.7. The idea is as follows. A sufficient

condition to form a long chain from a node v is for v to be a member of the long cycle that will

occur with high probability according to the proposition. Note that with constant probability e−c,

v will be isolated and thus not be part of the cycle, but we can make this probability small by

taking C large.

Proof of Corollary EC.2. Given ε from the statement of Corollary EC.2, let C̄ and n̄0 be values

guaranteed to exist by applying Proposition EC.7 with δ = 1 and the probability of a long chain

existing is at least 1− ε/2.

There exists C∗ such that for all c > C∗, 3ce−c < ε/2 as the function f(x) = xe−x is strictly

decreasing for x> 1. We claim that given our ε, Corollary EC.2 holds by taking C = max{C̄,C∗}

and n0 = n̄0.

Given our ER(n, c/n) graph where n>n0 and c >C and a fixed node v, let A be the event that

the graph contains a cycle of length at least (1− 3ce−c)n, and let B ⊂A be the event that v is in
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the cycle. Observe that it suffices to prove that P (B)> 1− ε to establish the result, as 3ce−c < ε

by our assumption that c >C ≥C∗ and the definition of C∗. Thus we compute that

P(B) = P (B|A)P(A)≥ (1− ε/2)(1− ε/2)≥ 1− ε,

showing the result, where P(A) ≥ 1− ε/2 follows from Proposition EC.7 and P (B|A) ≥ 1− ε/2

follows as the cycle is equally likely to pass through every node, and so, when the cycle hits 1−ε/2

fraction of the nodes, it has probability 1− ε/2 of hitting v. �

We extend the result above to the case of bipartite random graphs. Note that 1/p in the statement

below roughly corresponds to n in the statements above.

Corollary EC.3. Fix any κ> 1 and ε > 0. Then there exists p0 > 0 and C > 0 such that the fol-

lowing holds: consider any cL ∈ [1/
√
κ,κ], any cR >C, and any p < p0. Let L be a set of cL/p vertices

and let R be a set of cR/p vertices. Fix a node v ∈ L. Draw G = (L,R,E) as an ER(cL/p, cR/p, p)

bipartite random graph. We have,

P
(
Pv < 2

cL
p

(1− ε)
)
≤ ε,

where, again, Pv is the length of a longest path starting at v.

The idea of the proof is as follows. First, we show with a simple calculation that a constant fraction

of the nodes in R will have both an indegree and an outdegree of one, as p→ 0. We consider paths

that use only this subset of nodes from R. Such a path is equivalent to a path in a modified graph

on the set of nodes L where there is an edge between two nodes u and v if and only if there is

a path of length two between them via an intermediate node in R that has an indegree and an

outdegree of one. Such a graph behaves (approximately) as an Erdős–Rényi graph on the nodes of

L, with the number of edges proportionate to |R|. Thus, by ensuring that |R| is sufficiently large,

we can apply Corollary EC.2 to obtain the result.

Proof of Corollary EC.3. Fix κ > 1 and ε > 0 from the statement of the corollary. For C and

p0 to be chosen later, let cL ∈ [1/
√
κ,κ], cR > C, and let p < p0 be arbitrary. Given our graph
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G = (L,R,E), that is, ER(cL/p, cR/p, p), consider the subgraph G′ = (L,R′,E ′) of G, where R′ is the

set of vertices in R with indegree of one and outdegree of one in G, and E ′ are the edges in E such

that both endpoints are in G′. From this graph, we create a new directed non-bipartite digraph

G′′ = (L,E ′′), where there is an edge from u ∈ L to v ∈ L iff there is at least one node r ∈R′ such

that (u, r)∈ E ′ and (r, v)∈ E ′. Observe that a path of length k in G′′ gives a path of length 2k in G

by following the two edges in G′ for each edge in the path on G′′. Hence, it suffices to find a path

of length (1− ε)cL/p in G′′.

For any node r ∈R, let Ir be the indicator variable that r has an indegree of one and an outdegree

of one. Note that these variables are independent. Further, we have,

µ(p)
∆
= P(Ir = 1) = P(Bin(|L|, p) = 1)2 =

(
cL
p
p(1− p)

cL
p −1

)2

→ c2
L exp(−2cL),

as p→ 0. As each of the Ir are independent, we have that

|R′| d= Bin

(
cR
p
,µ(p)

)
.

Letting

A1(δ1) =

{
(1− δ1)

cR
p
µ(p)< |R′|< (1 + δ1)

cR
p
µ(p)

}
we have by Proposition EC.1 that for all p,

P(A1(δ1))≥ 1− 2exp

(
−δ2

1

cR
p

µ(p)

3

)
.

We can view the edges of G′′ as being generated by the following process: for each r ∈R′, pick a

source and then a destination uniformly at random from L and add an edge from the source to

the destination unless either:

• the source and destination are the same node,

• an edge between the source and destination already exists in the graph.

Thus |E ′′| is the number of nonempty bins if we throw |R′| balls into (cL/p)
2 bins and then throw

out the cL/p bins that correspond to self-edges. (Alternatively, we can think of this process as
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throwing cR/p balls, but each ball “falls through” only with probability 1− µ(p). This problem

was studied extensively in Samuel-Cahn 1974, but here we need only a coarse analysis.) Trivially,

|E ′′| ≤ |R′|. We now show that, typically, the number of nonempty bins is almost equal to the

number of balls thrown. For each r ∈ R′, let Xr be the indicator that there is ` ∈ L′ such that

(`, r)∈ E ′ and (r, `)∈ E ′. It is easy to see that the Xr are i.i.d. Bernoulli(p/cL). For each {r, s} ⊂R′,

let Y{rs} be the indicator that the nodes r and s are “colliding” on both their source and destination

choices in L′; i.e. there is `,m∈L′, ` 6=m, such that (`, r), (`, s), (r,m), (s,m)∈ E ′. It is easy to see

that P(Y{rs} = 1)≤ p2/c2
L for each `,m∈L′. We have,

|E ′′| ≥ |R′| −
∑
r∈R′

Xr−
∑

{r,s}⊂R′
Y{rs}.

We compute that for any fixed R′,

E

∑
r∈R′

Xr +
∑

{r,s}⊂R′
Y{rs}

≤ |R′| p
cL

+

(
|R′|

2

)
p2

c2
L

≤ |R′| p
cL

+

(
|R′| p

cL

)2

Letting

A2(δ2) =

∑
r∈R′

Xr +
∑

{r,s}⊂R′
Yrs ≤ δ2|R′|

 ,

we have that

P(A2(δ2))≥ 1− p

δ2cL
− |R′|δ−1

2

(
p

cL

)2

.

Letting

B(δ1, δ2) =

{
(1− δ1)(1− δ2)

cR
p
µ(p)< |E ′′|< (1 + δ1)

cR
p
µ(p)

}
,

we have that B(δ1, δ2)⊃A1(δ2)∩A2(δ2), and thus by taking complements and then applying the

union bound,

P(B(δ1, δ2))≥ 1−P(A1(δ1)c)−P(A2(δ2)c)

≥ 1− 2exp

(
−δ2

1

cR
p
µ(p)/3

)
− p

δ2cL
− (1 + δ1)cRµ(p)

p

δ2
2c

2
L

,
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thus giving us a high probability bound on the size of |E ′′| as p→ 0.

For our fixed ε, let C̃ and ñ0 be C and n0 from Corollary EC.2 such that for any c > C̃ and n> ñ0,

given a node in graph ER(n, c/n), there exists a path of length at least n(1− ε/2) with probability

at least 1− ε/2. We now specify p0 from the corollary to be such that for all cL ∈ [1/
√
κ,κ], we

have cL/p0 > ñ0, i.e., p0 < 1/(n0

√
κ).

Let G̃ = (L, Ẽ) be an ER(cL/p, C̃p/cL) directed random graph. We now couple G′′ (a directed

ER(n,M) graph, where M is random but independent of the edges selected) and G̃ (a directed

ER(n,p) graph) in the standard way so that when |Ẽ | ≤ |E ′′| then Ẽ ⊂ E ′′, and when |E ′′| ≤ |Ẽ| then

E ′′ ⊂ Ẽ . Thus if G̃ has a long path and |Ẽ |< |E ′′|, then G′′ will have at least as long a path as well,

as it will contain more edges on the same nodes. Let P̃ be the length of a longest path starting at

v in G̃. Letting

A3 =

{
P̃ >

(
1− ε

2

) cL
p

}
and recalling that p0 < 1/(n0

√
κ) implies that cL/p > ñ0. We have by Proposition EC.7 that

P (A3)≥ 1− ε

2
.

We now need to show that G′′ will have more edges than G̃ with high probability for all cR sufficiently

large (which we can control by choice of C from the statement of the corollary). We have that

|Ẽ | ∼Bin((cL/p− 1)cL/p, C̃p/cL), and thus, by Proposition EC.1, if

A4(δ4) =
{
C̃(cL/p− 1)(1− δ4)< |Ẽ |< C̃(cL/p− 1)(1 + δ4)

}
then

P(A4(δ4))≥ 1− 2exp

(
−δ2

4C̃

(
cL
p
− 1

)
/3

)
.

Now, for any fixed choice of δ1, δ2, δ4, there exists C sufficiently large such that if cR >C then for

all p < p0 and all cL ∈ [1/
√
κ,κ],

C̃

(
cL
p
− 1

)
(1 + δ4)< (1− δ1)(1− δ2)

cR
p
µ(p)
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(recall that µ(p) converges to a constant depending on only cL as p→ 0). For large enough cR, we

have that

{|E ′′|> |Ẽ |} ⊂B(δ1, δ2)∩A4(δ4),

as B makes |E ′′| big and A4 ensures that |Ẽ | is small. Putting everything together, we have that{
P > 2

cL
p

(1− ε)
}
⊃B(δ1, δ2)∩A3 ∩A4(δ4),

and by taking complements and then applying the union bound, we obtain

P
(
P > 2

cL
p

(1− ε)
)
≥ 1−P(B(δ1, δ2)c)−P(Ac3)−P(A4(δ4)c) = 1− ε

2
−O(p),

showing the result. �

The required bounds on cL, namely cL ∈ [1/
√
κ,κ], will correspond to bounds on p times the

“typical” interval between successive times when the chain advances under a greedy policy. These

intervals are distributed i.i.d. Geometric(p), and hence typically lie in the range [1/(p
√
κ), κ/p] for

large κ, as stated in Lemma EC.2 below. The 1/
√
κ term in the lower bound of this “typical” range

is a somewhat arbitrary choice we make that facilitates a proof of Theorem 3 (a variety of other

decreasing functions of κ would work as well).

Lemma EC.2. There exist p0 and κ0 such that for all p < p0 and all κ> κ0, if X ∼Geometric(p),

then

E
[
XI{X< 1

p
√
κ

or X>κp }

]
≤ 2

κp
.

Proof. By the memoryless property of the geometric distribution, for all t > 0,

E[X |X > t] = t+E[X] = t+
1

p
. (EC.39)

Thus for all sufficiently large κ we have

E
[
XIX>κp

]
= (1− p)κp

(
κ

p
+

1

p

)
(EC.40)

≤ e−κ 1 +κ

p
(EC.41)

≤ 1

2κp
, (EC.42)
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where (EC.40) follows from (EC.39), (EC.41) follows as (1−p)1/p ≤ e−1 for all p (take logarithms),

and finally (EC.42) holds provided that κ≥ κ0 for appropriately large κ0.

For the remaining term, we have that for all sufficiently large κ and sufficiently small p,

E
[
XIX≤ 1√

κp

]
=E[X]−E

[
XIX> 1√

κp

]
=

1

p
− (1− p)

1√
κp

(
1√
κp

+
1

p

)
(EC.43)

≤ 1

p
−
(

1− p
e

) 1√
κ
(

1√
κp

+
1

p

)
(EC.44)

≤ 1

p
− (1− p)

1√
κ

(
1− 1√

κ

)(
1√
κp

+
1

p

)
(EC.45)

=
1

p
− (1− p)

1√
κ

1

p
+ (1− p)

1√
κ

1

κp

≤ 2√
κ

+
1

κp
(EC.46)

≤ 3

2κp
. (EC.47)

where (EC.43) follows from (EC.39). To obtain (EC.44), by Taylor’s theorem, (1− p)1/p = e−1(1−

p/2) + o(p) as p→ 0; thus, for sufficiently small p, we have that (1− p)1/p ≥ e−1(1− p). In (EC.45)

we use that e−x ≥ 1−x, in (EC.46), we use that for all x sufficiently small, 1≥ (1−x)n ≥ 1− 2xn,

and (EC.47) follows by taking κ sufficiently large. Thus the result is shown. �

EC.3.1. Proof of Theorem 3

We introduce the following notation. Let G(t) = (V(t),E(t), h(t)) be the directed graph at time

t describing the compatibility graph at time t. Here h(t) is a special node not included in V(t)

that is the head of the chain, which can only have outgoing edges. We denote by G(∞) =

(V(∞),E(∞), h(∞)) the steady-state version of this graph (which exists as we show below).

According to the greedy policy, whenever h(t) forms a directed edge to a newly arriving node,

a largest possible chain starting from h(t) is made. Thus before the new node arrives, h(t+ 1)

will always have an indegree and outdegree of zero (as explained in Section 2), and we can only

advance the chain when a newly arriving node has an incoming edge from h(t). We refer to these
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periods between chain advancements as intervals. Let τi for i= 1,2, . . . , denote the length of the

ith interval. Note that τi ∼Geometric(p). Let T0 = 0 and Ti =
∑i

j=1 τj for i= 1,2, . . . , be the time

at the end of the ith interval. Additionally, let Ai be the set of nodes that arrived during the ith

interval [Ti−1, Ti], in particular |Ai| = τi, and let Wi be the set of nodes that were “waiting” at

the start of the i-th interval, namely, at time Ti−1. Thus, right before the chain is advanced, every

node in the graph is either in Wi, Ai or it is h(t) itself.

Proof of Theorem 3: Performance of the greedy policy. We apply Proposition EC.2, taking as

our Markov chain Xi = G(Ti), and our Lyapunov function V (·) to be V (G(Ti))
∆
= |V(Ti)|. For a

constant C > 0 to be specified later, we let α from Proposition EC.2 be α=C/p. Thus our finite

set of exceptions is B = {G = (V,E , h) : |V| ≤ C/p}, the directed graphs with at most C/p nodes.

Obviously our state space is countable and B is finite. Let Pi be the path of nodes that are removed

from the graph in the ith interval. Thus

|V(Ti)|= |V(Ti−1)|+ |Ai| − |Pi|.

By taking Ai = |Ai| = τi and Di = |Pi|, we have that V (·) satisfies the form of (EC.3) and the

independence assumptions on Ai and Di. As τi ∼Geometric(p), we have E[|Ai|2]≤ 2/p2 = 2E[|Ai|]2,

and so we can take C1 = 2. We set C2 = 2, and so to apply Proposition EC.2, we must find λ > 0

such that for every graph G 6∈ B,

EG [|Ai| −min{|Pi|,2|Ai|}]≤−λE[|Ai|], (EC.48)

where EG[·] denotes the expectation conditioned on the event Gi−1 = G. We create an auxiliary

bipartite graph G′i = (Ai,Wi,E ′i), where Ai are the nodes on the left, Wi are the nodes on the

right, and E ′i is the subset of E(Ti) consisting of edges (u, v) such that either u ∈ Ai, v ∈ Wi or

vice versa (thus ensuring that G′i is bipartite). We let v′i ∈ Ai be the node newly arrived at Ti

that h(Ti − 1) connected to. Finally, we let P ′i be the longest path in G′i starting at v′i. Trivially,

|P ′i| ≤ |Pi|. Observe that G′i is a ER(|Ai|, |Wi|, p) bipartite random graph. Thus we apply Corollary

EC.3 to show that |P ′i| is appropriately large with high probability. In particular, given arbitrary
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ε > 0 and κ> κ0 > 1, where κ0 is to be specified later, find C and p0 according to Corollary EC.3.

Then G(Ti−1) 6∈ B implies that |Wi|= |V(Ti−1)| ≥ C/p. Then, if p < p0 and a ∈
[

1
p
√
κ
, κ
p

]
, then by

Corollary EC.3,

P
(
|P ′i|< 2|Ai|(1− ε)

∣∣∣Ai|= a
)
≤ ε. (EC.49)

We define the events Ei and Fi by

Ei =

{
Ai 6∈

[
1

p
√
κ
,
κ

p

]}
Fi = {|P ′i|< 2|Ai|(1− ε)} .

We define Zi
∆
= 2|Ai|(1 − ε)IEci∩F ci . Thus Zi ≤ |P ′i| ≤ |Pi| by the definition of the event Fi, and

Zi ≤ 2|Ai| by construction. We now use this to get an upper bound (EC.48) as follows. First, we

have that

EG [|Ai| −min{|Pi|,2|Ai|}]≤EG [|Ai| −Zi]

=E [|Ai|IEi ] +E
[
|Ai| −Zi

∣∣∣Ec
i

]
P(Ec

i ), (EC.50)

where in (EC.50) we used that Zi is zero on Ei. Now noting that for all a ∈
[

1
p
√
κ
, κ
p

]
, i.e., in the

event Ec
i , we have that

P
(
Zi = 0

∣∣∣ |Ai|= a
)

= P
(
Fi

∣∣∣ |Ai|= a
)
≤ ε,

by (EC.49), and therefore

P
(
Zi = 2(1− ε)|Ai|

∣∣∣ |Ai|= a
)

= P
(
F c
i

∣∣∣ |Ai|= a
)
≥ 1− ε.

as well. We now compute that

E
[
|Ai| −Zi

∣∣∣Ec
i

]
=

∑
a∈

[
1

p
√
κ
,κp

]E
[
|Ai| −Zi

∣∣∣ |Ai|= a
]
P
(
|Ai|= a

∣∣∣Ec
i

)

=
∑

a∈
[

1
p
√
κ
,κp

]E
[
|Ai| −Zi

∣∣∣Fi ∩ |Ai|= a
]
P
(
Fi

∣∣∣ |Ai|= a
)
P
(
|Ai|= a

∣∣∣Ec
i

)
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+
∑

a∈
[

1
p
√
κ
,κp

]E
[
|Ai| −Zi

∣∣∣F c
i ∩ |Ai|= a

]
P
(
F c
i

∣∣∣ |Ai|= a
)
P
(
|Ai|= a

∣∣∣Ec
i

)

≤
∑

a∈
[

1
p
√
κ
,κp

]E
[
|Ai|

∣∣∣Fi ∩ |Ai|= a
]
· ε ·P

(
|Ai|= a

∣∣∣Ec
i

)

+
∑

a∈
[

1
p
√
κ
,κp

]E
[
|Ai| − 2(1− ε)|Ai|

∣∣∣F c
i ∩ |Ai|= a

]
· (1− ε) ·P

(
|Ai|= a

∣∣∣Ec
i

)

≤ εE
[
|Ai|

∣∣∣Ec
i

]
+ (1− ε)E

[
(−1 + 2ε)|Ai|

∣∣∣Ec
i

]
= (−1 + 4ε− 2ε2)E

[
|Ai|

∣∣∣Ec
i

]
≤ (−1 + 4ε)E

[
|Ai|

∣∣∣Ec
i

]
.

Now combining this with (EC.50), we have that

E [|Ai|IEi ] +E
[
|Ai| −Zi

∣∣∣Ec
i

]
P(Ec

i )≤E [|Ai|IEi ] + (−1 + 4ε)E
[
|Ai|

∣∣∣Ec
i

]
P(Ec

i )

=E [|Ai|IEi ] + (−1 + 4ε)E
[
|Ai|IEci

]
P(Ec

i )

≤ 2

κp
+ (−1 + 4ε)

(
1

p
− 2

κp

)
(EC.51)

≤−1

p
+

4ε

p
+

4

κp
,

=−1

p

(
1− 4ε− 4

κ

)
,

where in (EC.51) we used Lemma EC.2 twice. Now, we let δ
∆
= 4ε+ 4/κ, and observe that we can

make δ arbitrarily and the inequality will still hold for sufficiently small p by our choice of ε and

κ0. As we have that

EG [|Ai| −min{|Pi|,2|Ai|}]≤−
1

p
(1− δ) =−E[|Ai|](1− δ),

we can apply Proposition EC.2 with λ= (1− δ) to obtain that

E[|V(T∞)|] ≤max

{
α,

max{1,C2− 1}2C1

λ
E[Ak]

}(
2 +

2

λ

)
= max

{
C

p
,

2

1− δ
1

p

}(
2 +

2

1− δ

)
.
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Finally, recall that we are working with the “embedded Markov chain” as we are observing the

process at times Ti only. We can relate the actual Markov chain to the embedded Markov chain as

follows:

E[|V(∞)|] = lim
t→∞

1

t

t∑
s=0

|V(s)| (EC.52)

= lim
n→∞

1

Tn

Tn∑
s=0

|V(s)| (EC.53)

= lim
n→∞

n

Tn
lim
n→∞

1

n

n∑
i=1

Ti∑
s=Ti−1

|V(s)|

= p lim
n→∞

1

n

n∑
i=1

(
|V(Ti−1)|(Ti−Ti−1) +

(Ti−Ti−1)(Ti−Ti−1 + 1)

2

)
(EC.54)

≤ p

(
lim
n→∞

1

n

n∑
i=1

|V(Ti−1)|(Ti−Ti−1) +
1

n

n∑
i=1

(Ti−Ti−1)2

)
. (EC.55)

Here (EC.52) follows from the positive recurrence of G(t). We have (EC.53) because an→ a implies

that for every subsequence ani , we have that ani→ a as well, and using that, almost surely Tn→∞.

We obtain the left term in (EC.54) by observing that Tn is the sum of n independent Geometric(p)

random variables and then applying the SLLN. For the right term of (EC.54), we simply use that

|V(s+ 1)|= |V(s)|+ 1 for s∈ [Ti−1, Ti− 1], and then the identity
∑n

i=1 i= n(n+ 1)/2.

We now consider each sum from (EC.55) independently. For the first sum, observing that

|V(Ti−1)|(Ti − Ti−1) is a function of our positive recurrent Markov chain G(Ti), we have that

there exists a random variable X∗ such that |V(Ti−1)|(Ti − Ti−1)⇒X∗ and the average value of

|V(Ti−1)|(Ti−Ti−1) converges to E[X∗] a.s. The convergence in distribution |V(Ti−1)|(Ti−Ti−1)⇒

X∗ implies the existence of |Ṽ(T̃i−1)|(T̃i− T̃i−1) that converges to X∗ a.s. Putting these together,

we have that

lim
n→∞

1

n

n∑
i=1

|V(Ti−1)|(Ti−Ti−1) =E[X∗] (EC.56)

=E
[

lim
i→∞
|Ṽ(T̃i−1)|(T̃i− T̃i−1)

]
≤ lim inf

i→∞
E [|V(Ti−1)|(Ti−Ti−1)] (EC.57)

= lim inf
i→∞

E [|V(Ti−1)|]E[Ti−Ti−1] (EC.58)
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=
1

p
E[|V(T∞)|]. (EC.59)

Here we have (EC.56) by the ergodic theorem for Markov chains, (EC.57) by Fatou’s lemma,

(EC.58) by the independence of Ti−Ti−1 from V(Ti−1), and (EC.59) by Theorem 2 from Tweedie

(1983) (alternatively, (EC.59) can be shown with a little extra work by using a simpler result from

Holewijn and Hordijk 1975).

For the second sum, as Ti−Ti−1 = τi are i.i.d. Geometric(p), by the SLLN,

lim
n→∞

1

n

n∑
i=1

(Ti−Ti−1)2 =E[τ 2
1 ] =

2− p
p2
≤ 2

p2

Thus

E[|V(∞)|]≤ p
(

1

p
E[|V(T∞)|] +

2

p2

)
=E[|V(T∞)|] +

2

p
,

showing the result, as we have for the embedded process that E[|V(T∞)|] = Ω(1/p). �

Finally, we mention that in moving from the “embedded Markov chain” back to the original

Markov chain we make use of the fact that τi is light tailed in the sense that E[τ 2
i ] =O((E[τi])

2),

to obtain a bound of O(1/p) of the steady-state expected number of nodes in the system.

Proof of Theorem 3: Lower bound. Let C = 24. We will show that the expected steady-state

waiting time W is at least 1/(Cp) for all p, giving the result. Assume to the contrary that there

exists p such that W ≤ 1/(Cp). By Little’s law we have that W =E[|V(∞)|]≤ 1/(Cp) as well. Let i

be a node entering at steady-state. LetW be the set of nodes in the system when i arrives, leading

toW d
= |V(∞)|, and define the event E1 = {|W| ≤ 3W}. By Markov’s inequality, P(E1)≥ 2/3. Note

that i cannot leave the system until it has an indegree of at least one. Let A be the first 3W arrivals

after i, and let the event E2 be the event that either a node from W or a node from A has an edge

pointing to i. We have that

P(E2) = P(Bin(|W|+ 3W,p)≥ 1),

making

P(E2 |E1)≤ P(Bin(6W,p)≥ 1)≤ P(Bin(6/(Cp), p)≥ 1)≤ 6

C
=

1

4
,
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using the definition of E1, and then that W ≤ 1/(Cp), then Markov’s inequality, and finally that

C = 24. Thus

W =E[Waiting time of node i]

≥ 3WP(Ec
2)≥ 3WP(Ec

2|E1)P(E1)≥ 3W (1− 1/4)(2/3) = 3W/2>W,

providing the contradiction. �

EC.4. Two-way cycles with departures

We argued heuristically in Section 1 that our problem formulation, with no departures and looking

for a policy that minimizes the expected waiting time, is closely related to an alternate possible

formulation where agents die at a certain rate and the goal is to minimize the likelihood that an

agent will die before being served. The argument is based on the fact that minimizing the expected

waiting time in our formulation is the same as minimizing the expected number of nodes in the

system (by Little’s law), and, in the alternate formulation, the rate of agents perishing is also

minimized by minimizing the expected number of nodes in the system.

In this section, we formalize this connection in the case of two-cycle removal. Consider a modified

model, with agents departing/dying at rate of λp2, and ask what policy minimizes the chance that

an agent will depart unsuccessfully. We follow our proof of Theorem 1 very closely to obtain a very

similar result, i.e., that the greedy policy is asymptotically optimal.

Note that a death rate of order p2 is the scaling regime in which the likelihood an agent will die

before being served remains bounded away from 0 and 1 for small p. This is exactly the scaling

regime considered in Akbarpour et al. (2014); in fact the model considered in this section is identical

to the model considered in that paper (with no criticality information) up to a redefinition of

parameters. (Our λ corresponds to 1/d there, our p2 corresponds to d/m there, and time moves m

times as fast in that paper.) Following our approach, we obtain a tight lower bound, not obtained

in the concurrent paper Akbarpour et al. (2014).

Define the loss of a policy to be the expected fraction of agents who die without being served in

steady-state.
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Theorem EC.1. Fix λ ∈ (0,∞). Let x∗ be the unique solution of f(x) = 0, where f(x) =−λx+

2exp(−x)− 1. Consider the two-cycle removal setting and each agent dying with probability λp2

in each period, independently across agents and periods. Then the loss of the greedy policy (see

Definition 1) is λx∗(1 + o(1)). This is optimal, in the sense that for every periodic Markov policy

(see Definition 2), the loss is at least λx∗(1 + o(1)).

Proof of Theorem EC.1. We first compute the expected steady-state waiting time under the

greedy policy. Let V(t) be the number of nodes in the system just before a new node arrives at time

t. If an incoming node at time t forms a two-way cycle, it is executed and the remaining |V(t)|− 1

nodes each die with probability λp2 before the next period. If no two-way cycle is formed, each of

the |V(t)|+ 1 nodes dies with probability λp2 before the next period. We deduce that for all t≥ 0,

each of the |V(t)| − 1 nodes

E[|V(t+ 1)| − |V(t)|] = [1− (1− p2)|V(t)|](1−λp2)(|V(t)| − 1)

+ (1− p2)|V(t)|(1−λp2)(|V(t)|+ 1)− |V(t)|

= −λ|V(t)|p2 + (2(1− p2)|V(t)|− 1)(1−λp2)

= −λ|V(t)|p2 + 2exp(−p2|V(t)|)− 1 +O(p2)

Let x∗ be the unique solution of f(x) = 0, where f(x) =−λx+ 2exp(−x)− 1. Note that f ′(x) =

−λ− 2exp(−x) < −λ for all x. The idea is that for |V(t)| > x∗/p
2(1 +O(p2)), the random walk

has a negative drift, and hence we should be able to establish that E[|V(t)|] does not exceed

x∗/p
2 by much. On the other hand, for |V(t)|<x∗/p

2(1 +O(p2)), the random walk has a positive

drift, and hence we will obtain a tight characterization of the performance of the greedy policy

as Egr[|V(t)|] = (x∗/p
2)(1 + o(1)). As a side remark, we point out that x∗ ∈ (1/(2 + λ), ln 2) can

be immediately deduced. (The extreme values of this interval correspond to the lower and upper

bounds in Akbarpour et al. (2014).)

Let ε > 0 be arbitrary. Suppose that |V(t)|> (1+ε)x∗/p
2. Then |V(t+1)|−|V(t)| is stochastically

dominated by a random variable defined as

−1 + 2Bernoulli((1− p2)|V(t)|)−Binomial(|V(t)| − 1, λp2)
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with the Bernoulli and Binomial r.v.’s being independent of each other. For small enough p this is

further dominated by

Zt =−1 + 2Bernoulli(exp{−(1 + ε/2)x∗})−Binomial((1 + ε/2)x∗/p
2, λp2).

Note that E[Zt] = f(x∗(1 + ε/2))≤−λε/2 and P(|Zt|>n)≤C exp(−n) for some C <∞ that does

not depend on p, using that Zt ≤ 1 and E[exp(−Zt)] is bounded above independently of p, and

then using Markov’s inequality on exp(−Zt). In other words, Zt has negative expectation and has

subexponential tails where our control over the distribution of Zt is independent of p.

Let S0 = 0 and for t≥ 1, St+1 = (St +Zt)
+, and so St is a random walk with negative drift, and

well-behaved independent steps, reflected at zero. This is a positive recurrent renewal process, that

renews each time it hits 0. We deduce (e.g., from Proposition EC.2) that

E[S∞] =C ′ =C ′(ε,λ)<∞,

where S∞ is distributed as per the stationary distribution of S. We can couple the random walk

|V(t)| with St such that |V(t)| ≤ (1 + ε)x∗/p
2 + St for all t. (When |V(t)|< (1 + ε)x∗/p

2, then we

simply use the fact that the number of nodes can increase by at most 1 per time step. On the other

hand, if |V(t)| ≥ (1 + ε)x∗/p
2, then Zt stochastically dominates the step size |V(t+ 1)| − |V(t)| by

construction.) This yields

E[|V(∞)|]≤ (1 + ε)
x∗
p2

+E[S∞]≤ (1 + ε)
x∗
p2

+C ′ ≤ (1 + 2ε)
x∗
p2
.

for small enough p, since C ′ does not depend on p. Thus, for every ε > 0, we have that

lim
p→0

E[|V(∞)|]−x∗/p2

1/p2
≤ 2x∗ε.

As ε is arbitrary, the result follows.

Now we establish the lower bound on |V(∞)|. Let v be a newly arriving node at time t, and let

W be the nodes currently in the system that are waiting to be matched. Let I be the indicator

that at the arrival time of v (just before cycles are potentially deleted), no two-way cycles between
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v and any node in W exist. Let Ĩ be the indicator that at the arrival time of v, no two-way cycles

that will eventually be removed from between v and any node in W exist (in particular, Ĩ depends

on the future). Thus Ĩ ≥ I a.s. Let Ṽ (t) be the number of vertices in the system before time t such

that a cycle that eventually removes them has not yet arrived. We let Ṽ (∞) be distributed as Ṽ (t)

when the system begins in steady-state. By stationarity,

0 =E[Ṽ (t+ 1)− Ṽ (t)] =E∞[2Ĩ − 1−Number of deaths]≥E∞[2Ĩ − 1]−λp2E[Ṽ (∞) + 1],

since just after time t at most Ṽ (t)+1 nodes are still waiting for the cycle that eventually removes

them, and each of them dies with probability λp2. Define x̃= p2E[Ṽ (∞)]. Thus, we obtain

E∞[Ĩ]≤ 1/2 + (p2 + x̃)λ/2≤ 1/2 + (p2 +x)λ/2 ,

where x = p2E[|V(∞)|], since Ṽ ≤ |V|. Intuitively, in steady-state, the expected change in the

number of vertices not yet “matched” must be zero. Thus we obtain

1

2
+ (p2 +x)λ/2 =E[Ĩ] ≥E[I] =E[E[I | |V(∞)]] =E

[
(1− p2)|V(∞)|]

≥ (1− p2)E[|V(∞)|] ≥ exp(−x) +O(p2),

by Jensen’s inequality. Thus,

f(x) =−λx+ 2exp(−x)− 1≤O(p2),

leading to x≥ x∗+O(p2) using f(x∗) = 0 and f ′(x)<−λ for all x. It follows that the loss rate (for

any periodic Markov policy in steady-state), which is the same as the expected number of nodes

that die in each period, is bounded below by

λp2E[#nodes just after new node arrives and cycles are executed, in steady-state]

= λp2E[ |V(∞)|+ 1−E[#nodes removed via cycles in one time unit, in steady-state] ]

≥ λp2E[|V(∞)|]

= λx

≥ λx∗+O(p2) ,

which implies the stated lower bound. Here we used that in expectation at most 1 node can be

served via a cycle per time unit in steady-state, since the arrival rate is 1. �
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