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Questions?

« Optimal control of grid with transmission and storage?

 Infrastructure improvement:

— New transmission line? Upgrade in existing line?
— New storage facility?
— New generation?

Which will help more?

How to optimally allocate budget?



Our contribution

« Control design for discrete time model

« Analytical insights quantifying benefits of storage,
transmission and overprovisioning
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Constraints

« Storage capacity constraints
Hard constraint

« Transmission constraints
Soft constraint



Cost function

e &pyst = Cost of fast generation

(free disposal of energy) 4_V
0

Fasti(t)

e & = Cost of violating transmission constraints

° = F(D)

* Performance criterion: € = &g, + EF



What’s the issue?

« Centralized control problem 7
e F(t) is linear function of controls ¥

« Storage constraints cause thresholding ¢

« Non-quadratic cost function X

ldea: Use surrogate cost function
Var(Fast) + A Var(F) + 1 Var(B)

(drop storage constraints for now)



The surrogate problem

« ‘State’ consisting of buffer sizes
* ‘Noise’ Wind(t)

« State and noise fully observed
* Linear state evolution

e Quadratic cost

 Assume Wind(t) is Gaussian

We have an LQG problem!

e Can be solved numerically yielding control scheme

« Can be mapped back to original problem



The surrogate LQG problem

» Is the scheme any good?

» Any insights into roles of storage and transmission?



Specific networks

e Transmission network is almost a tree
« What happens on an infinite line?
« What about a two-dimensional grid?




1-D and 2-D grids

Assume:

» Storage S at each node
> Capacity C on each line
> Wind;(t) ~ N(0,0%) iid




S = Storage
1-D and 2-D grids C = Transmission
o? = Var(Wind)
We find, for original problem:

» Analytical expressions for cost of LQG-based schemes
» Fundamental limits

= LQG is near optimal
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C and S together works best!
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S = Storage
C = Transmission

Resul =
eSU tS < EFaSt + SF g2 = VaI‘(Wind)
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Averaging over 2-D much more effective than 1-D



S = Storage
C = Transmission

Results € = &gp, + EF 62 = Var(Wind)
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S seems to provide extra dimension for averaging!

Intuition: Time is like extra spatial dimension
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Spatial averaging is much easier in 2-D

1-D 2-D

N e B

N
Segment of length [ Square of side [
Std. dev =oVI Std. dev =l
Cut size = 2C Cut size = 4CI
Both scale together!
= (Can only average over = Can average over large [.
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Conclusions and future work

« (Gaussian assumption optimistic

« But key insights should remain valid:

— 2-D averaging much better than 1-D
— S facilitates averaging over extra dimension

 In the paper: A little overprovisioning can go a long way



Thank you!



