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In this Online Appendix we prove the correctness of our new matching algorithm in

Appendix A, prove our main results from the paper in Appendix B, and discuss how our

results may be extended to many-to-one random matching markets in Appendix C.

A Matching algorithm

The goal of this section is to present Algorithm 2 in the paper, which is the basis of our anal-

ysis. This algorithm allows us to calculate the WOSM by a process of successive proposals by

men. It first finds the men-optimal stable matching using the men-proposing DA algorithm

(Algorithm 1 in the paper, or MPDA), and then progresses to the women-optimal stable

matching through a series of divorces of matched women followed by proposals by men. At

the end of this section we show how the run of the algorithm on a random matching market is

equivalent to a randomized algorithm. In Appendix B we analyze the randomized algorithm

to prove Theorem 1 in the paper. Throughout our analysis and this section we assume that

there are strictly more women than men, that is, |W| > |M|.
Before presenting Algorithm 2 we first give a simplified version. The following algorithm,

adapted from McVitie and Wilson (1971) and Immorlica and Mahdian (2005), produces the

WOSM from the MOSM by finding each woman’s most preferred stable match. It uses µ̃ to

maintain the most recent stable matching. Each phase instigates a rejection chain to check

whether there is a more women-preferred stable matching, using m to hold the proposing

man and µ to hold the temporary assignment. It also maintains a set S of women whose
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most preferred stable match has been found. Denote the set of women who are unmatched

under the MOSM by1 W̄ . We initialize S to be S = W̄ , as by the rural hospital theorem

these women are unmatched under any stable matching. We use the notation x← y for the

operation of copying the value of variable y to variable x.

Algorithm A.1. MOSM to WOSM (simplified)

• Input: A matching market with n men and n+ k women.

• Initialization: Run the men-proposing deferred acceptance to get the men-optimal stable

matching µ. Set S = W̄ to be the set of women unmatched under µ. Select any

ŵ ∈ W\S.

• New phase:

1. Set µ̃← µ.

2. Divorce: Set m← µ(ŵ) and have ŵ reject m.

3. Proposal: Man m proposes to his most preferred woman w to whom he has not

yet proposed.2

4. w’s Decision:

(a) If w 6= ŵ prefers her current match µ(w) over m, or if w = ŵ and she prefers

µ̃(ŵ) over m, she rejects m. Go to step 3.

(b) If w /∈ {ŵ} ∪ W̄, and w prefers m over µ(w), then w rejects her current

partner and accepts3 m. Go to step 3.

(c) New stable matching: If w = ŵ and ŵ prefers m over all her previous pro-

posals, w accepts m and a new stable matching is found. Select ŵ ∈ W\S
and start a new phase from step 1.

(d) End of terminal phase: If w ∈ W̄, restore µ← µ̃, erase rejections accordingly,

and add ŵ to S. If S = W, terminate and output µ̃. Otherwise, select

ŵ ∈ W\S and begin a new phase from step 1.

1Since there are more women than men W̄ 6= φ.
2See footnote 22 in the paper.
3More precisely, we use a temporary variable m′ as follows: m′ ← µ(w), µ(w)← m and m← m′.
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It will be convenient to use the following terminology. A phase is a sequence of proposals

made by the algorithm between visits to step 1. An improvement phase is a phase that

terminates at step 4(c) (a new stable matching is found). A terminal phase is a phase that

terminates at step 4(d) (there is no better stable husband for ŵ ). We refer to the sequence

of women who reject their husbands in a phase as the rejection chain.

In each phase the algorithm tries to find a more preferred husband for ŵ, which requires

divorcing m = µ̃(ŵ) and assigning him to another woman. In improvement phases the

algorithm finds a more preferred stable husband for ŵ, and updates µ̃ to the new stable

matching. In terminal phases the algorithm finds that ŵ cannot be assigned a man she

prefers over m without creating a blocking pair, and therefore m is ŵ’s most preferred stable

parter.

Proposition A.2. Algorithm A.1 outputs the women-optimal stable matching.

Proof. The algorithm terminates as each man can make only a finite number of proposals,

and there is at most one terminal phase (that is rolled back) per woman. Consider a phase

that begins with a stable µ̃. Immorlica and Mahdian (2005) show that if the phase ends

at step 4(c), the matching µ̃ at the end of the phase is stable as well. By induction, every

µ̃ is a stable matching. Immorlica and Mahdian (2005) also show that if a phase ends at

step 4(d), then µ̃(ŵ) is ŵ’s most preferred stable man. Any subsequent matching µ̃ is a

stable matching in which ŵ is weakly better off, and therefore µ̃ also matches ŵ with her

most preferred stable man. Finally, any woman in W̄ is unmatched under the WOSM by

the rural hospital theorem (Roth, 1986). Thus the algorithm terminates with µ̃ being the

WOSM that matches all women with their most preferred stable husband.

We now refine the algorithm to prune repetitions. Since proposals made during terminal

phases are rolled back, we can end a phase (and roll back to µ̃) as soon as we learn that the

phase is a terminal phase. During the run of Algorithm A.1 each woman in S is matched

with her most preferred stable husband. Therefore we can terminate the phase (and roll

back) if a woman in S accepts a proposal, as this can happen only in terminal phases.

Furthermore, suppose that in a terminal phase the rejection chain includes each woman at

most once. We show that every woman in the rejection chain is matched under µ̃ with her

most preferred stable husband, and can therefore be added to S. When the rejection chain

includes a woman more than once there are improvement cycles in the chain. We can identify
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these improvement cycles and implement them as an Internal Improvement Cycle (IIC).

Specifically, whenever a woman in the chain receives a new proposal we check whether she

prefers the proposing man over the best stable partner she has found so far. If she prefers

the proposing man, the part of the rejection chain between this proposal and her best stable

partner so far forms an improvement cycle. We implement the IIC by recording the stable

matching we found in µ̃ and removing the cycle from the rejection chain. By removing these

cycles from the rejection chain we are left with a rejection chain that includes each woman

at most once, and when the phase is terminal the entire chain can be added to S. See

Algorithm 2, step 4(c) below for a precise definition of IICs.

Applying these modifications to Algorithm A.1 gives us Algorithm 2. It keeps track of

the women in the current rejection chain as an ordered set V = (v1, v2, .., vJ) of women,

and adds all of them to S if the phase is terminal. If a woman in S accepts a proposal the

phase ends as a terminal phase. As in Algorithm A.1, the variable µ̃ saves the most recent

stable matching and µ stores a candidate matching which evolves through the phase. This

version of the algorithm also keeps track of ν(w), the current number of proposals received

by woman w, and R(m), the set of women who rejected m so far. These counters were

omitted in the version given in Section 3, and are added here to allow us to refer to them

later in the proof (The two versions of Algorithm 2 are otherwise identical).

Algorithm 2. MOSM to WOSM

• Input: A matching market with n men and n+ k women.

• Initialization: Run the men-proposing deferred acceptance algorithm to get the men-

optimal stable matching µ, and set R(m) and ν(w) accordingly. Set t = 0 since no

proposals have occurred yet. Initialize S to be the set of women unmatched under µ.

Select any ŵ ∈ W\S.

• New phase:

1. Set µ̃← µ. Set v1 ← ŵ and V ← (ŵ).

2. Divorce: Set m← µ(ŵ) and have ŵ reject m (add ŵ to R(m)).
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3. Proposal: Man m proposes to his most preferred woman4 in W\R(m). Increment

ν(w) and proposal number t by one each.

4. w’s Decision:

(a) If w /∈ V and w prefers µ(w) over m, or if w ∈ V and w prefers µ̃(w) over

m, then w rejects m (add w to R(m)). Go to step 3.

(b) If w /∈ S ∪ V and w prefers m over µ(w), then w rejects her current partner.

Set m′ ← µ(w), µ(w)← m. Add w to R(m′) and append w to the end of V .

Set m← m′ and go to step 3.

(c) New stable matching: If w ∈ V and w prefers m over µ̃(w), then we have

found a stable matching. If w = ŵ = v1, set µ(ŵ) ← m. Select ŵ ∈ W\S
and start a new phase from step 1.

If w = v` for ` > 1, record her current husband as m′ ← µ(w). Call the set

of all proposals made after the proposal of m′ to w an internal improvement

cycle (IIC). Set µ(w)← m and update µ̃ for the women in the loop by setting

µ̃(vj)← µ(vj) for j = `, `+1, ..., J . Remove v`, .., vJ from V , set the proposer

m ← m′, decrement ν(w), decrement t, and return to step 3, in which m

(earlier m′) will again propose to w.

(d) End of terminal phase: If w ∈ S and w prefers m over µ(w), then restore

µ ← µ̃ and add all the women in V to S. If S = W, terminate and output

µ̃. Otherwise, select ŵ ∈ W\S and begin a new phase from step 1.

In step 4(c) we found a new stable matching. If the rejection chain cycles back to the

original woman, we have an improvement phase. If the rejection chain cycles back to a woman

v` in the middle of the chain we implement the IIC (implementing the IIC is equivalent to an

improvement phase that begins with v`). Update the best stable matching µ̃ for all women

in the cycle, and make it the current assignment. Then take m′ and make him propose again

to v`, as we changed µ(v`). Decrement t and ν(v`) in order not to count this proposal twice.

Proposition A.3. Algorithm 2 outputs the women-optimal stable matching.

Proof. Consider the run of Algorithm 2 for a given sequence of selections of ŵ. We will find

a sequence of selections for Algorithm A.1 such that Algorithm 2 is equivalent to Algorithm

4See footnote 22.
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A.1. Since Algorithm A.1 outputs the WOSM for every sequence of selections, this will prove

that Algorithm 2 finds the WOSM as well.

We construct the sequence of selections of ŵ for Algorithm A.1 by following the run of

Algorithm 2 and making the state of Algorithm 2 at the time of proposal t identical to the

state of Algorithm A.1 in some proposal (note that the two algorithms may have a different

proposal count). After the initialization step both algorithms are in an identical state, and we

start them both with the same selection of ŵ. Assume that under our sequence of selections

the algorithms are identical up to proposal t − 1, and consider the t-th proposal made by

Algorithm 2. Both algorithms perform the same actions when Algorithm A.1 performs steps

4(a), 4(b), and 4(c) when w = ŵ. When a phase ends we start a new phase for Algorithm

A.1 by selecting the same ŵ as in Algorithm 2. Therefore it remains to consider step 4(c)

with w 6= ŵ and step 4(d).

Consider the case in which proposal t in Algorithm 2 performs step 4(c) with w 6= ŵ;

that is, the algorithm found an IIC with w = v`. We change the sequence of selections of

ŵ in Algorithm A.1 so that v` is chosen to be ŵ just before the current phase. That makes

the previous phase of Algorithm A.1 an improvement phase for ŵ = v` in which the cycle of

the IIC is implemented. Continuing to run Algorithm A.1 into the current phase will reveal

the chain (v1, ..., v`−1) and reach the proposal to woman v`. Algorithm 2 will have the same

chain and proposal following the implementation of the IIC, and since now v` /∈ V ∪ S the

two algorithms will have an identical state at the end of the step.

Consider next the case in which proposal t in Algorithm 2 performs step 4(d); that

is, the phase is declared to be a terminal phase because a woman w ∈ S accepted the

proposal. First, we show that if we continue to run Algorithm A.1 it will uncover a rejection

chain that ends in W̄ and declare the phase to be a terminal phase. If w ∈ W̄ this is

immediate. Otherwise, we infer the remainder of the rejection chain as follows. Woman

w was added to S in some previous terminal phase. Recursively build the rejection chain

C = {w1, w2, ..., wq} ⊂ S, where w1 = w, wq ∈ W̄ , and each wj was added to S in a terminal

phase where wj rejected her husband mj, triggering a series of proposals by mj that resulted

in mj making a proposal that was accepted by wj+1. We next show that following proposal

t Algorithm A.1 will continue to uncover the rejection chain C.

From the construction of C, at the time of proposal t we have that µ(wj) = mj under

Algorithm 2. To see that, recall that each wj was added to S in a terminal phase which
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reverted her back to the husband mj she rejected. Following that terminal phase the assign-

ment of wj did not change, as the algorithm never changes assignments of women who are

already in S. Using the induction assumption, at the step of Algorithm A.1 that corresponds

to proposal t of Algorithm 2 we have that µ(wj) = mj.

Now, consider the continuation of the phase under Algorithm A.1. When w = w1 rejects

her husband m1, he will make proposals in the same order as he did in the terminal phase

in which w1 was added to S under Algorithm 2. All women that m1 prefers over w2 rejected

him back then, and since throughout the algorithm a woman’s assignment can only be

changed to a more preferred husband, these women will reject him again in the current

phase. Therefore, m1 will end up proposing to w2. Since at that point µ(w2) = m2 the

proposal will be accepted by w2, making m2 the new proposer. By induction, mj will make

an accepted proposal to wj+1, until a proposal is made to wq ∈ W̄ . At this step Algorithm

A.1 declares a terminal phase and rolls back to µ̃, at which point the phase ends with the

same µ and µ̃ as in Algorithm 2.

The remaining difference between the algorithms is that under Algorithm 2 at step 4(d)

all women in V are added to S. Continue to run Algorithm A.1 by starting a phase with

a selection of a new ŵ from V , until we have that V ⊂ S under Algorithm A.1. We have

shown above that all these phases will be terminal phases, and will therefore be rolled back.

Following these selections, Algorithm A.1 will have the same µ̃ and S as in Algorithm 2

following proposal t.

Therefore, by the end of the run we find a sequence of selections of ŵ for Algorithm A.1

such that the two algorithms hold identical µ and µ̃ at the end of Algorithm 2. Thus when

Algorithm 2 terminates, Algorithm A.1 terminates as well and outputs the same matching.

By Proposition A.2 the output of Algorithm A.1 is the WOSM.

The following lemma shows how Algorithm 2 allows us to compare the WOSM and

MOSM.

Lemma A.4. The difference between the sum of mens’ rank of wives under WOSM and the

sum of mens’ rank of wives under MOSM is equal to the number of proposals in improvement

phases and IICs during Algorithm 2.

Proof. Note that at the end of each terminal phase (Step 4(d)) we roll back all proposals

made in that phase and return to µ̃, the matching from the previous phase. Therefore, we
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can consider only improvement phases and IIC, in which each proposal increases the rank of

the proposing man by one.

A.1 Randomized algorithm

As we are interested in the behavior of Algorithm 2 on a random matching market, we

transform the deterministic algorithm on random input into a randomized algorithm, which

will be easier to analyze. The randomized, or coin flipping, version of the algorithm does not

receive preferences as input, but draws them through the process of the algorithm.5 This is

often called the principle of deferred decisions.

The algorithm reads the next woman in the preference of a man in step 3 and whether a

woman prefers a man over her current proposal in step 4. Since the algorithm ends a phase

immediately when a woman w ∈ S accepts a proposal, no man applies twice to the same

woman during the algorithm, and therefore the algorithm never reads previously revealed

preferences.6 In step 3 the randomized algorithm selects the woman w uniformly at random

from W\R(m). In step 4 the probability that w prefers m over her current match can be

given directly from ν(w) for w /∈ S or bounded for w ∈ S.7 Table 1 describes the probabilities

of the possible decisions of w. Note that the event in Step 4(a) is the complement of the

union of the events in Table 1.

B Proof

We will prove the following quantitative version of the main theorem from the paper:

5 The initialization step of the randomized version of Algorithm 2 uses the randomized version of Algo-

rithm 1.
6There is an apparent exception to this in the case of an IIC, where we chose to describe the algorithm

with a rollback of the proposal by man m′ to v` that occurred just before the IIC, followed by remaking that

proposal (which we know will be rejected by v`); cf. Step 4(c) of Algorithm 2. This was merely to simplify

the exposition; in our stochastic analysis we proceed by directly considering the proposal by m′ to his next

most preferred woman after v`.
7The probability that a woman w ∈ S accepts a man m can be calculated from the number of proposals

she received during improvement phases or MPDA and the number of proposals she received during terminal

phases. Since the bound on the acceptance probability we calculate from ν(w) is sufficient for our analysis

we omit the additional counters from the algorithm.
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Step Event Probability

4(b) w /∈ S ∪ {ŵ} prefers m over µ(w) 1
ν(w)+1

4(c) ŵ prefers m over µ̃(ŵ) 1
ν(ŵ)+1

4(d) w ∈ S\W̄ prefers m over µ(w) at least 1
ν(w)+1

Table 1: Probabilities in a run of Algorithm 2 on a random matching market.

Theorem B.1. Fix any ε > 0. Consider a sequence of random matching markets, indexed

by n, with n men and n + k women, for arbitrary 1 ≤ k = k(n). There exists n0 <∞ such

that for all n > n0, with probability at least 1− exp
{
− (log n)0.4

}
, we have

(i) In every stable matching µ:

RMEN(µ) ≤ (1 + ε)
(
(n+ k)/n

)
log
(
(n+ k)/k

)
RWOMEN(µ) ≥ n

/[
1 + (1 + ε)

(
(n+ k)/n

)
log
(
(n+ k)/k

)]
.

(ii) Less than n/(log n)0.5 men, and less than n/(log n)0.5 women have multiple stable part-

ners.

(iii) The men are almost as well off under the WOSM as under the MOSM:

RMEN(WOSM)

RMEN(MOSM)
≤ 1 + (log n)−0.4 .

(iv) The women are almost as badly off under the WOSM as under the MOSM:

RWOMEN(WOSM)

RWOMEN(MOSM)
≥ 1− (log n)−0.4 .

Remark B.2. In our proof of Theorem B.1 (ii), we actually bound the number of different

stable partners. We show that the sum over all men (or women) of the number of different

stable partners of each man is no more than n + n/
√

log n. Thus, in addition to the bound

stated in Theorem B.1 (ii), we rule out the possibility that there are a few agents who have

a large number of different stable partners.
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Definition B.3. Given a sequence of events {En}, we say that this sequence occurs with

very high probability (wvhp) if

lim
n→∞

1− P(En)

exp
{
−(log n)0.4

} = 0 .

Clearly, it suffices to show that (i)-(iv) in Theorem B.1 hold wvhp.

To prove Theorem B.1, we analyze the number of proposals in Algorithm 1 followed by

Algorithm 2, which will provide us the average rank of wives in the women-optimal stable

match. We partition the run of Algorithm 2 leading to the WOSM into three parts (Parts

II through IV below).

1. Part I is the run of DA (Algorithm 1), which by an analysis similar to that in

(Pittel (1989)), takes no more than 3n log(n/k) proposals wvhp.

2. Part II are the proposals in Algorithm 2 that take place before the end of

first terminal phase. We show that wvhp,

• Part II takes no more than (n/k)(log n)0.45 ≤ n(log(n/k))0.45 proposals.

• When part II ends the set S contains at least n(1−ε)/2 elements.

3. Part III are the proposals in Algorithm 2 after Part II that take place until

|S| ≥ n0.7. Thus, this part ends at the end of a terminal phase when |S|
exceeds n0.7 for the first time. We show that, wvhp, part III requires O(n0.47)

phases, and o(n) proposals.8

4. Finally, Part IV includes the remaining proposals from the end of part

III until Algorithm 2 terminates or 50n log n total proposals have occurred

(including proposals made in Parts I and II), whichever occurs earlier. Be-

cause the set S is large, most phases are terminal phases containing no IICs, and most

acceptances lead to eventual inclusion in S. We show that, wvhp, part IV ends with

termination of the algorithm, and that the number of proposals in improvement phases

and IICs is o(n). But the increase in sum of men’s rank of wives from the MOSM to the

8For any two functions f : N→ R and g : N→ R>0 we write f = o(g) if limn→∞
f(n)
g(n) = 0 and f = O(g)

if there exist a constant a such that f(n) ≤ ag(n) for sufficiently large n. We write f(n) = Θ(g(n)) if there

exist constants a ≤ b, n0 such that ag(n) ≤ f(n) ≤ bg(n) for all n > n0.
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WOSM is exactly the number of proposals in improvement phases and IICs, yielding

the result.

The definition of Part III based on when |S| exceeds n0.7 is for technical reasons, with the

exponent of 0.7 being a choice for which our analysis goes through. Throughout this section,

we consider the preferences on both sides of the market as being revealed sequentially as the

algorithm proceeds, as discussed in Appendix A.1.

Lemma B.4. Consider a man m, who is proposing at step 3 of Algorithm 2. Consider

a subset of women A ⊆ W\R(m). Let ν(A) = 1
|A|
∑

w̃∈A ν(w̃) be the average number of

proposals received by women in A. The man m proposes to some woman w in the current

step. Conditional on w ∈ A and all preferences revealed so far, the probability that m is the

most preferred man who proposed w so far, is at least 1
ν(A)+1

.

Proof. For any woman w̃ /∈ R(m) the probability that m is the most preferred man who

applied to w so far is 1
ν(w̃)+1

. Conditional on w ∈ A, the probability that m is the most

preferred man who applied to w so far is at least

1

|A|
∑
w̃∈A

1

ν(w̃) + 1
≥ 1

ν(A) + 1

by Jensen’s inequality.

The following lemma will be convenient and its proof is trivial:

Lemma B.5. If all men have lists of length |W| and |W| > |M|, then no man ever reaches

the end of his list in Algorithm 1 or Algorithm 2.

B.1 Part I

For the analysis in this section we consider the following equivalent version of men proposing

deferred acceptance:

Algorithm 3. Index the men M. Initialize SM = φ, W̄ = W, ν(w) = 0 ∀w ∈ W and

R(m) = φ ∀m ∈M.

1. If M\SM is empty then terminate. Else, let m be the man with the smallest index in

M\SM. Add m to SM.
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2. Man m proposes to his most preferred woman w whom he has not yet applied to (in-

crement ν(w)). If he is at the end of his list, go to Step 1.

3. Decision of w:

• If w ∈ W̄, i.e, w is unmatched then she accepts m, remove w from W̄. Go to

Step 1.

• If w is currently matched, she accepts the better of her current match and m and

rejects the other. Set m to be the rejected man, add w to R(m) and continue at

Step 2.

Note that the output of Algorithm 3 is the same as the output of Algorithm 1, i.e., it

is the man optimal stable match (we have just reordered the proposals). The output of

Algorithm 3 is given as an input to Algorithm 2. Again, we think of preferences as being

revealed as the algorithm proceeds, with the women only revealing preferences among the

set of men who have proposed them so far.

The next lemma establishes upper bounds on the average and maximum men’s rank of

wives and a lower bound on the women’s average rank of husbands. The upper bound for

the worst possible men’s rank of wifes is due to Pittel (1989) who obtained this bound in a

balanced market (by adding more women to the market men are only becoming better off).

Lemma B.6. Fix any ε > 0. Let µ be the men-optimal stable matching. The following hold

wvhp:

(i) the men’s average rank of wives in µ is at most (1 + ε)
(
n+k
n

)
log
(
n+k
k

)
and is at least

(1− ε)
(
n+k
n

)
log
(
n+k
k

)
,

(ii) maxm∈MRankm(µ(m)) ≤ 3(log n)2,

(iii) the women’s average rank of husbands in µ is at least n
/[

1 + (1 + ε)
(
n+k
n

)
log
(
n+k
k

)]
.

Proof. We first prove the upper bound in (i), then (ii), then the lower bound in (i), and

finally (iii).

Tracking Algorithm 3 like in Pittel (1989), we claim that, wvhp, the sum of the men’s

rank of wives is at most (1 + ε)(n + k) log((n + k)/k) for small enough ε > 0. This claim

immediately implies the stated bound (i) on the men’s average rank of wives. To prove
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the claim, we use the fact that the number of proposals is stochastically dominated by the

number of draws in the coupon collector’s problem, when n distinct coupons must be drawn

from n + k coupons. This latter quantity is a sum of Geometric((n + k − i + 1)/(n + k))

random variables for i = 1, 2, . . . , n. The mean is

n∑
i=1

n+ k

n+ k − i+ 1
= (n+ k)

( 1

k + 1
+

1

k + 2
+ . . .+

1

n+ k

)
= (n+ k)

(
log((n+ k)/k) +O(1/k)

)
= (n+ k) log((n+ k)/k)

(
1 +O(1/(k log((n+ k)/k)))

)
.

A short analytical exercise9 shows that 1/(k log((n+k)/k)) is monotone decreasing in k, and

is thus maximized at k = 1. It follows that 1/(k log((n+ k)/k)) ≤ 1/ log(n+ 1) ≤ 1/(log n),

which establishes that the error term O(1/(k log((n + k)/k))) = O(1/ log n) vanishes in the

limit. Now routine arguments (e.g., Durrett (2010)) can be used to show that, in fact, this

sum exceeds (1 + ε)(n+ k) log((n+ k)/k) with probability exp(−Θ(n)). This establishes the

upper bound in (i).

Intuitively, the upper bound in (ii) should hold since it holds for a balanced market (see

Pittel (1989)), and adding more women should presumably only make the bound tighter.

We show that this is indeed the case. Our proof works as follows: we first show that for any

man m, the probability that Rankm(µ(m)) > 3(log n)2 is bounded above by 1/n1.2. We then

use a union bound over the men to establish (ii).

Fix a man m and consider Algorithm 3, where one additional man is processed at a time.

From McVitie and Wilson (1971), we know that the final outcome is the MOSM, and this

does not depend on the order in which the men are processed. Therefore, we can assume

that m is processed last.

Let t = 1, 2, . . . be the index of the proposals. From the upper bound in (i) proved above,

9Define f(k) = k log((n + k)/k), where we think of n as fixed, and k ∈ (0,∞) as varying. We obtain

f ′(k) = log(1 + n/k) − 1 + 1/(1 + n/k). It suffices to show that f ′(k) > 0 for all k > 0. To show this, we

define g : (0,∞)→ R as g(x) = log(1 + x)− 1 + 1/(1 + x). Now limx→0 g(x) = 0 and g′(x) = x/(1 + x)2 > 0

for all x > 0, leading to g(x) > 0 for all x > 0. Hence, f ′(k) > 0 for all k > 0, as required.
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we know that with probability 1− exp(−Θ(n)), the MOSM is found before

t = T∗ = (1 + ε)(n+ k) log((n+ k)/k)

≤ (1 + ε)(n log(1 + n/k) + n lim
k→∞

(k/n) log((n+ k)/k))

≤ n(1 + ε)(log(1 + n/k) + 1)

≤ 1.1n log n ,

for small enough ε and large enough n. Let Ê be the event that this bound holds. Then we

know that

P(Êc) ≤ exp(−Θ(n)) .

We track10 Algorithm 3 until it terminates or index t exceeds T∗. If the index t exceeds T∗,

i.e., we observe Êc, we declare failure and stop. Hence, we can use t ≤ T∗ in what follows.

Consider the i-th proposal by man m, and suppose i ≤ 3(log n)2. Then there are at least

n + k − 3(log n)2 women that m has not yet proposed to, and these women have together

received no more than T∗ proposals in total so far. Using Lemma B.4, the probability of the

proposal being accepted is at least

1/(T∗/(n+ k − 3(log n)2) + 1) ≥ 1/(1.1n log n/(n− 3(log n)2) + 1) ≥ 1/(1.2 log n)

for large enough n. If the proposal is accepted by a woman ŵ, each subsequent proposal in

the chain is, independently, at least as likely to go to an unmatched woman as it is to go to

ŵ. Hence, the subsequent rejection chain has a probability at least 1/2 of terminating in an

unmatched woman before there is another proposal to woman ŵ. As such, the probability

that the i-th proposal will be the last proposal made by m is at least (1/2) · 1/(1.2 log n) =

1/(2.4 log n). It follows that the probability thatm has to make more than 3(log n)2 proposals

before the MOSM is reached or failure occurs is no more than(
1− 1

2.4 log n

)3(logn)2

≤
(

exp
{
− 1

2.4 log n

})3(logn)2

≤ exp(−1.25 log n) = 1/n1.25 .

Combined with the probability of failure, using a union bound, the overall probability that

man m makes more than 3(log n)2 proposals is bounded above by 1/n1.25 +P(Êc) ≤ 1/n1.25 +

10As usual, we reveal information about each preference list as it is needed (cf. Appendix A.1): for men

we reveal the next entry in the preference list just before a new proposal; for women, we reveal whether a

new proposal is the best one so far, only when the proposal is made.
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exp(−Θ(n)) ≤ 1/n1.2, for large enough n. Since the same bound applies to any man, we can

use a union bound to find that

P(Any man makes more than 3(log n)2 proposals) ≤ n · 1/n1.2 = 1/n0.2 .

We conclude that wvhp, no man makes more than 3(log n)2 proposals, establishing (ii).

We now establish the lower bound in (i), i.e., that the sum of men’s rank of wives is

at least (1 − ε)(n + k) log((n + k)/k). The proof is similar to that of the upper bound in

(i). From (ii), we have that wvhp, no man makes more than 3(log n)2 proposals. It follows

that for each proposal that occurs during the search for the i-th unmatched woman, the

probability that an unmatched woman is found is at most

pi =
n+ k − i+ 1

n+ k −min(3(log n)2, i− 1)
.

It follows that the number of proposals needed to find the i-th woman stochastically dom-

inates Geometric(pi), conditional on what has happened. It follows that the mean total

number of proposals is at least

n∑
i=1

n+ k − 3(log n)2

n+ k − i+ 1
=
(
n+ k − 3(log n)2

)( 1

k + 1
+

1

k + 2
+ . . .+

1

n+ k

)
= (n+ k) log((n+ k)/k)(1 +O(1/(log n)) ,

where we bound the error term as above and using 3(log n)2/(n + k) = O((log n)2/n) =

O(1/(log n)). Again, routine arguments (e.g., Durrett (2010)) can be used to show that, in

fact, a sum of independent Geometric(pi) random variables for i = 1, 2, . . . , n is less than

(1− ε)(n+ k) log((n+ k)/k) with probability exp(−Θ(n)). This establishes the lower bound

on the men’s average rank of wives.

Now consider the women’s rank of husbands. For a woman w, who has received ν(w)

proposals in Part I, the rank of her husband is a random variable that depends only on ν(w),

and not anything else revealed so far. We have

E[Rankw(µ(w))] =
n+ 1

ν(w) + 1
.

Define

M ≡ E

 ∑
w∈W\W̄

Rankw(µ(w))

 = (n+ 1)
∑

w∈W\W̄

1

ν(w) + 1
.
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Using Azuma’s inequality (see Durrett (2010)), we have

P
(

(1/n)
∑

w∈W\W̄

Rankw(µ(w)) ≤ M

n
−∆

)
≤ exp

{
−n∆2

2n2

}
,

since Rankw(µ(w)) ∈ [0, n]. Plugging in ∆ = n3/4 yields

P
(

(1/n)
∑

w∈W\W̄

Rankw(µ(w)) ≤ M

n
− n3/4

)
≤ exp

{
−n

1/2

2

}
. (1)

Using Jensen’s inequality in the definition of M , we have

M ≥ (n+ 1)n · 1

1 + (1/n)
∑

w∈W\W̄ ν(w)

≥ n2

1 + (1 + ε/2)
(
n+k
n

)
log
(
n+k
k

) wvhp ,

where we used (i) with ε replaced by ε/2, i.e., (1/n)
∑

w∈W\W̄ ν(w) ≤ (1+ε/2)
(
n+k
n

)
log
(
n+k
k

)
wvhp. Using

(
n+k
n

)
log
(
n+k
k

)
≤ 1.1 log n (see the bound on T∗ in the proof of (ii)), i.e., the

n3/4 is negligible in comparison to M/n, we can deduce that

M

n
− n3/4 ≥ n

1 + (1 + ε)
(
n+k
n

)
log
(
n+k
k

) wvhp , (2)

for large enough n (notice that we used the ε/2 slack).

Combining Eqs. (1) and (2), we obtain (iii).

Lemma B.7. Suppose k ≤ n0.1. Then, wvhp, there are fewer than n0.99 women who each

receive less than (1/2) log n proposals.

Proof. Now consider a woman w′. For each proposal, it goes to w′ with probability at least

1/(n+k), unless the proposing man has already proposed w′. Suppose w′ receives fewer than

(log n)/2 ≤ (2/3)(1− 2ε) log(n+ k)/k proposals, where, for instance, we can define ε = 0.01.

Since, wvhp, each man makes at most 3(log n)2 proposals (Lemma B.6(ii)), wvhp there are

at most (3/2)(log n)3 proposals by men who have already proposed w′. Using Lemma B.6(i),

wvhp, there are at least (1−ε)(n+k) log((n+k)/k) proposals in total. It follows that, wvhp,

there are at least (1− ε)(n+k) log((n+k)/k)− (3/2)(log n)3 ≥ (1−2ε)(n+k) log((n+k)/k)

proposals by men who have not yet proposed w′. Using Fact E.1 (i), the probability that
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fewer than (2/3)(1− 2ε) log((n+ k)/k) of these proposals go to w′ is

P
(
Binomial((1− 2ε)(n+ k) log((n+ k)/k), 1/(n+ k)) < (2/3)(1− 2ε) log(n+ k)/k)

)
≤ 2 exp{−(1− 2ε) log((n+ k)/k)/27} ≤ ((n+ k)/k)−1/28 ≤ n−0.02 ,

for k ≤ n0.1. It follows that the expected number of women who receive fewer than (1/2) log n

proposals is no more than (n + k)n−0.02 ≤ 2n0.98. By Markov’s inequality, the number of

women who receive fewer than (1/2) log n proposals is no more than n0.99, with probability

at least 1− 2n0.98/n0.99 = 1− o(exp{−(log n)0.4}).

B.2 Part II

Lemma B.9 below shows that by the end of Part II, the number of proposals by each man is

“small”, the number of proposals received by each woman is “small”, and that the set S is

“large”. Since S will be large at the end of this part, Part III will terminate “quickly”. The

next lemma says that wvhp, there will not be too many proposals in Part II (this bound will

be assumed in the proof of Lemma B.9).

Lemma B.8. Part II completes in no more than n+k
k

(log n)0.45 ≤ (n+1)(log n)0.45 proposals

wvhp.

Proof. For each proposal (Step 3) in Part II, the probability of Step 4(d), which will end

Part II, is the probability that the man m proposes to an unmatched woman k
|W\R(m)| ≥

k
n+k

.

Therefore the probability that the number of proposals in part II exceeds ((n+k)/k)(log n)0.45

is at most
(
1− k

n+k

)((n+k)/k)(logn)0.45 ≤ exp(−(log n)0.45) = o(exp{−(log n)0.4}), leading to

the first bound. Noticing that (n + k)/k = 1 + n/k ≤ 1 + n, we obtain the bound of

(n+ 1)(log n)0.45.

Lemma B.9. Fix any ε > 0. At the end of Part II, the following hold wvhp:

(i) No man has applied to a lot of women:

max
m∈M

|R(m)| < nε. (3)

(ii) The set S is large: |S| ≥ n(1−ε)/2.
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(iii) No woman received many proposals

max
w∈W

ν(w) < nε. (4)

Proof. Using Lemma B.6, we know that wvhp, there have been no more than 3n log(n/k)

proposals and no man has proposed more than 3(log n)2 women in Part I. Assume that these

two conditions hold for the rest of the proof.

We begin with (i). We say that a man m starts a run of proposals when m is rejected

by a woman at step 4(b) or is divorced from ŵ at step 2. We say that a failure occurs if

a man starts more than (log n)2 runs or if the length of any run exceeds (log n)3 proposals.

We associate a failure with a particular proposal t, when for the first time, a man starts his

(log n)2 + 1-th run, or the proposal is the (log n)3 + 1-th proposal in the current run.

Consider the number of runs of a given man m. Man m starts at most one run at step 2.

The other runs start when the proposing man m′ 6= m proposes to the women m is currently

matched with and m′ is accepted. At any proposal the probability that m′ proposes to any

particular woman is no more than the probability that he proposes to W̄ . Now if the latter

happens, Part II ends. Therefore, it follows that the number of runs man m has in part II

is stochastically dominated11 by 1 + Geometric(1/2). Hence, the probability that a man has

more than (log n)2 runs is bounded by
(

1
2

)(logn)2−1 ≤ 1/n2, showing that man m has fewer

than (log n)2 runs in Part II with probability at least 1−1/n2. It follows from a union bound

over all men m ∈M that wvhp failure due to number of runs does not occur.

Assume failure did not occur before or at the beginning of a run of man m. The number

of proposals man m accumulates until either the run ends or a failure occurs is bounded by

(log n)2 · (log n)3 ≤ n/2

for sufficiently large n. In each proposal in the run before failure, man m proposes to a

uniformly random woman in W\R(m). Since there were at most 4n log n proposals so far,

we have that

ν (W\R(m)) ≤ 4n log n

n/2
= 8 log n .

11A real values random variable with cumulative distribution F1 is said to be stochastically dominated by

another r.v. with cumulative distribution F2 if F2(x) ≤ F1(x) for all x ∈ R.

18



From Lemma B.4, we have that the probability of acceptance at each proposal is at least
1

ν(W\R(m))+1
≥ 1

8 logn+1
. Therefore the probability of man m making (log n)3 proposals with-

out being accepted is bounded by12(
1

8 log n+ 1

)(logn)3

≤ 1

n3
.

Thus, the run has length no more than (log n)3 with probability at least 1− 1/n3. Now the

number of runs is bounded by n2, so we conclude that wvhp failure due to number of runs

does not occur. Finally, assuming no failure,

|R(m)| ≤ (log n)2 · (log n)3 < nε

establishing (i).

We now prove (ii). If k ≥ n(1−ε)/2, the set S is already large enough at the beginning

of Part II, and there is nothing to prove. Suppose k < n(1−ε)/2. Consider the evolution of

|V | during Part II. We first provide some intuition. Part II contains about n/k = ω(n1/2)

proposals before it ends. We start with |V | = 0, and |V | initially builds up without any new

stable matches found. We can estimate the size of |V | when Step 4(c) (new stable match)

occurs as follows13: Suppose we reach |V | ∼ N . Consider the next accepted proposal.

Ignoring factors of log n, the probability that the woman who accepts is in V is ∼ |V |/n ∼
N/n. Thus, for one of the next N accepted proposals to include a woman in V , we need

N ·N/n ∼ 1, i.e., N ∼
√
n. Thus, when |V | reaches a size of about

√
n, then an IIC forms

over the next ∼
√
n proposals, reducing the size of |V |. This occurs repeatedly, with |V |

converging to an ‘equilibrium’ distribution with mean of order
√
n, and this distribution has

a light tail. Thus, when the phase ends, we expect |V | ∼
√
n.

We now formalize this intuition. Whenever |V | < n(1−ε)/2, for the next proposal, the

probability that:

• The proposal goes to a woman in V is less than 2/n(1+ε)/2. Such a proposal is necessary

to creating an IIC.

• The proposal goes to a woman in S = W̄ , is at most 2k/(n+k) ≤ 2k/n ≤ 2/(n(1+ε)/2).

Such a proposal would terminate the phase.

12Again this inequality holds for large enough n. We omit the explicit mention of the condition “for large

enough n” when such inequalities appear subsequently in this section.
13This analysis is analogous to that of the birthday paradox.
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• The proposal goes to a woman in W\(S ∪ V ), who accepts it, is at least 1/(5 log n),

using the fact that there have been no more than 4n log n proposals so far and Lemma

B.4.

Suppose we start with any |V | < n(1−ε)/2, for instance we have |V | = 0 at the start of the

phase, we claim that with probability at least 1− 3k/
√
n, we reach |V | = n(1−ε)/2 (call this

an ‘escape’) before there is a proposal to S and before
√
n proposals occur. We prove this

claim as follows: There is a proposal to S among the next
√
n proposals with probability no

more than 2k/
√
n. Suppose that |V | stays less than n(1−ε)/2. Then there are nε/4 or more

proposals to women in |V | among
√
n total proposals with probability no more than 2−n

ε/4

using Fact E.1 (ii) on Binomial(
√

n, 2/n(1+ε)/2). Also, the probability that there are less than

n1/2−ε/8 proposals accepted by women in W\(V ∪ S) (these women are added to V ) is at

most 2−n
1/2−ε/8

, using Fact E.1 (ii) on Binomial(
√

n, 1/(5 log n)), since at each proposal, such

a woman is added with probability at least (1/(5 log n)). But if there are

• less than nε/4 proposals to V , each such proposal reducing |V | by at most n1/2−ε/2,

• no proposal to S, and

• at least n1/2−ε/8 women added to V ,

then we must reach |V | = n(1−ε)/2. Thus, the overall probability of not reaching |V | = n(1−ε)/2

before there is a proposal to S and before
√
n proposals occur is at most 2k/

√
n+ 2−n

ε/2
+

2−n
1/2−ε/4 ≤ 3k/

√
n. In particular, the probability of a failed escape is at most 3k/

√
n.

We now bound the number of times |V | reduces from a value larger than n(1−ε)/2 to a

value smaller than n(1−ε)/2. Suppose |V | ≥ n(1−ε)/2. The probability that a proposal goes

to S is at least k/(n + k) ≥ k/(2n). The probability that a proposal goes to one of the

first n(1−ε)/2 women in |V | is at most 2n(1−ε)/2/n ≤ 2/n(1+ε)/2. Thus, the number of times

the latter occurs is stochastically dominated by Geometric(k/(4n(1−ε)/2)) − 1. Thus, the

total number of escapes needed to ensure |V | ≥ n(1−ε)/2, including the one at the start of

the phase, is stochastically dominated by Geometric(k/(4n(1−ε)/2)), which exceeds n1/2−ε/4/k

with probability at most(
1− k/(4n(1−ε)/2)

)n1/2−ε/4/k ≤ exp(−nε/4/4) .
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Assuming no more than n1/2−ε/4/k escapes are needed, one of these escapes fails with proba-

bility at most (n1/2−ε/4/k) ·(3k/
√
n) = 3n−ε/4. Thus, the overall probability of |V | < n(1−ε)/2

when the phase ends is bounded by exp(−nε/4/4)+n−ε/4 = o(exp{−(log n)0.4}). Thus, wvhp,

|V | ≥ n(1−ε)/2 for all phases in Part II, including the terminal phase. This establishes (ii).

Finally, we establish (iii). Again we assume in our proof that Parts I and II end in no

more than 4n log n proposals in total, and that (i) holds (if not, we abandon our attempt

to establish (iii), but this does not happen wvhp). Fix a woman w. For each proposal, the

probability that she receives the proposal is no more than 2/n, using (i). Thus, the total

number of proposals she receives is no more than Binomial(2n log n, 2/n) which is less than

nε, except with probability 2−n
ε/(4 logn) by Chernoff bound (see Fact E.1 in Appendix E).

Union bound over the women gives us that (iii) holds wvhp.

Lemma B.10. Wvhp, the number of accepted proposals in Part II is no more than n/(2
√

log n)

and the improvement in sum of women’s rank of husbands during Part II is no more than

n2/(2(log n)3/2).

Proof. If k ≥ n0.1, then we already know that wvhp the number of proposals is no more than

n0.95 using Lemma B.8.

If k < n0.1, then we know from Lemma B.7, that, wvhp, fewer than n0.99 women each

received fewer than log n/2 proposals in Part I. Further, from Lemma B.9, wvhp, no man has

proposed to more than nε women in Parts I and II. It follows that for each proposal in Part

II, it goes to a woman who has already received log n/2 or more proposals with probability at

least 1−n−0.01/2. Hence, the probability that the proposal is accepted is at most 2.5/ log n.

But the total number of proposals in Part II, wvhp, is less than (n+1)(log n)0.45 from Lemma

B.8. It follows using Fact E.1 that, wvhp, fewer than 3(n + 1)/(log n)0.55 ≤ n/(10
√

log n)

proposals are accepted in Part II.

We now bound the improvement in the sum of women’s rank of husbands. Using Markov’s

inequality, there are, wvhp, at most n0.995 proposals to women who have received fewer than

log n/2 proposals so far. The maximum possible improvement in rank from these proposals

is (n+k)n0.995 ≤ 2n1.995. The number of proposals accepted by women who have received at

least log n/2 proposals so far is, wvhp, at most n/(10
√

log n), as we showed above. For such

a proposal accepted by a woman w′ who has received ν(w′) ≥ (log n)/2 previous proposals,
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the expected improvement in rank is

n− ν(w′)

ν(w′) + 1
− n− ν(w′)− 1

ν(w′) + 2
≤ n/((log n)/2)2 ≤ 4n/ log n ,

since log n ≥ 1. Further the improvement in rank is in the interval [1, n − 1]. Thus, the

total improvement in rank is stochastically dominated by a sum of independent Xi, for i =

1, 2, . . . , n/(10
√

log n), with E[Xi] ≤ 4n/ log n and 1 ≤ Xi ≤ n− 1. It follows using Azuma’s

inequality (see, e.g., Durrett (2010)) that this sum exceeds n/(10
√

log n) · 4n/ log n+ n1.6 ≤
n2/(2.1(log n)3/2) with probability at most

2 exp

{
− (n1.6)2

2 · n/(10
√

log n) · n2

}
= exp{−n0.1} = o(exp{−(log n)0.4}) .

Thus, the total improvement in the sum of women’s rank of husbands is, wvhp, no more

than 2n1.995 + n2/(2.1(log n)3/2) ≤ n2/(2(log n)3/2).

B.3 Part III

Let SII be the set S at the end of part II.

The next lemma provides upper bounds (that are achieved wvhp) on the number of

proposals each man makes and the number of proposals each woman receives throughout

Parts III and IV.

Let Et be the event that until proposal t, no man has applied to more than n0.6 women in

total or to more than n3ε women in SII, and no woman has received n2ε or more proposals.

Let E∞ be the event that these same conditions hold when Part IV ends.

Lemma B.11. The event E∞ occurs wvhp.

Proof. By Lemma B.9, we know that at the end of Part II, no man has made more than

nε proposals, that |SII| ≥ n(1−ε)/2, and that no woman has received more than nε proposals,

wvhp. We assume that all these conditions hold.

Fix a man m. We argue that if m makes a successful proposal to a woman in SII ∪ W̄ ,

then he makes no further proposals in Algorithm 2: If m makes a successful proposal to a

woman in S, this ends the phase making the phase a terminal one, man m goes back to the

woman to whom he was matched at the beginning of the phase, and this woman becomes

a member of S. Thus, if a m makes a successful proposal to a woman in S, he makes no
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further proposals. In particular, if m makes a successful proposal to a woman in SII\W̄ ,

then he makes no further proposals.

Suppose man m is proposing in proposal t and that Et holds. Then m has not yet applied

to at least 3n(1−ε)/2/4 women in SII. Hence the probability of applying to a woman in SII is at

least n(1−ε)/2/2. Further, since no woman has received n2ε or more proposals, the probability

of the proposal being accepted is at least 1/n2ε. Hence, the probability of the proposal going

to a woman in SII and being accepted is at least n−3ε−1/2. Hence, the man makes fewer

than n0.6/2 proposals in Part IV, and proposes to fewer than n3ε/2 additional women in SII,

except with probability exp(−nε/2). Using a union bound over the men, wvhp, no man has

applied to more than n0.6 women in total or to more than n3ε women in SII until the end of

Part IV.

Fix a woman w. Each time a proposal occurs, since no man has proposed to more than

n0.6 women (assuming Et holds), the probability of the proposal going to w is less than 2/n.

Since there are at most 50n log n proposals in total, the number of proposals received by w in

Part III is more than nε with probability less than P(Binomial(50n log n, 2/n) ≥ nε) ≤ 2−n
ε
,

using Chernoff bounds (see Fact E.1(ii) in Appendix E). Using a union bound over the

women, wvhp, no woman has received more than nε proposals until the end of Part IV.

The result follows combining the analyses in the two paragraphs above.

We now focus on Part III. We show (Lemma B.12) that for every phase in Part III, whp:

• the phase is a terminal phase, and

• that |V | at the end of the phase is at least n0.25.

For each such phase, |S| increases by at least n0.25. In addition, we show that phases are

short, with the expected length of a phase being O(n1/2+3ε). We infer that, wvhp, we reach

|S| ≥ n0.7, i.e., the end of Part III, in o(n0.47) phases, containing o(n) proposals. Lemma

B.13 below formalizes this.

Lemma B.12. Assume |SII| ≥ n(1−ε)/2, cf. Lemma B.9. Consider a phase during Part III.

Suppose I(Et) = 1 at the start of the phase. Then, whp, either I(Et′) = 0 at the end of the

phase, or we have:

• The phase is a terminal phase.
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• At the end of the phase is at least |V | ≥ n0.25.

Proof. Assume I(Eτ ) = 1 throughout the phase (otherwise there is nothing to prove). Since

we are considering a phase during Part III, we know that |S| < n0.7. Also, |S| ≥ |SII| ≥
n(1−ε)/2 by assumption. For each proposal, there is a probability of at least |S|n−2ε/(2n) ≥
n−1/2−3ε and at most 2|S|/n ≤ 2n−0.3, that the proposal is to a woman in S and is accepted.

It follows that, whp, the phase is a terminal phase, and the number of proposals in the phase

is in [n0.28, n0.52]. It is easy to see that with probability at least (1−2n0.28/n)n
0.28

= 1−o(1),

all of the first n0.28 proposals in the phase are to distinct women, meaning that there are

no IICs. For each proposal, the probability of acceptance is at least 1/(1 + n2ε), since no

woman has received n2ε proposals, so whp, there are at least n0.25 accepted proposals among

the first n0.28 proposals, using Fact E.1 (ii) on Binomial(n0.26, 1/(1 + n2ε)). Now, consider

the first n0.25 women in V . These women receive no further proposals during the phase with

a probability at least (1− 2n0.25/n)n
0.52

= 1− o(1). Hence, whp, these women are part of V

at the end of the phase, establishing |V | ≥ n0.25 at the end of the phase as needed.

Lemma B.13. Wvhp, Part III contains less than n0.99 proposals.

Proof. We first show that the next n0.47 phases after the end of Part II complete in fewer than

n0.99 proposals. Since, wvhp, |SII| ≥ n(1−ε)/2, if I(Et) = 1 then for proposal t the probability

of ending the phase (due to acceptance by a woman in S) is at least n−1/2−3ε. It follows that

either I(E∞) = 0 or wvhp, the next n0.47 phases after the end of Part II complete in no more

than n0.47+1/2+4ε ≤ n0.99 proposals, using Fact E.1 (ii) on P(Binomial(n0.97+4ε, n−1/2−3ε) ≥
n0.47).

Now we show that wvhp, Part III contains fewer than n0.47 phases. Suppose this is not

the case, then, by our definition of Part III, at most n0.45 of these phases increase |S| by n0.25

or more. But using Lemma B.12, either I(E∞) = 0, or this occurs with probability at most

P
(
Binomial(n0.47, 1− ε) ≤ n0.45

)
≤ P

(
Binomial(n0.47, 1/2) ≤ n0.47/4

)
≤ 2 exp(−n0.47/24) ,

using Fact E.1 (i). In other words, either I(E∞) = 0 or, wvhp, Part III contains fewer than

n0.47 phases.

But Lemma B.11 tells us that I(E∞) = 1 wvhp. Combining the above, we deduce that

wvhp, Part III contains fewer than n0.47 phases and fewer than n0.99 proposals.
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B.4 Part IV

Lemma B.14. Suppose we are at Step 3 (time t) of Algorithm 2 during Part IV, we have

I(Et) = 1, and man m is proposing. Then, for large enough n, the probability that:

(i) Man m proposes to S and is accepted is at least n−0.31.

(ii) Man m proposes to W\(R(m) ∪ ŵ) and is accepted is at least 0.9n/t.

Proof. Note that |S| ≥ n0.7, whereas by definition of Et the man has proposed to no more

than n0.6 women and no woman has received more than n2ε proposals. (i) follows from

Lemma B.4.

Proof of (ii): Since m has not applied to more than n0.6 women so far, we know that

|W\(R(m)∪ ŵ)| ≥ 0.95n. Also, the total number of proposals so far is t− 1. Using Lemma

B.4, the probability of applying to W\(R(m) ∪ ŵ) and being accepted is at least

1

1 + (t− 1)/(0.95n)
≥ 0.9n

t
,

for large enough n, using t > n since Part I itself requires at least n proposals.

Lemma B.15. Wvhp, Part IV ends due to termination of the algorithm.

Proof. Suppose Part IV does not end with termination (if not we are done) and that E∞
occurs (Lemma B.11 guarantees this wvhp). Reveal each proposal sequentially.

For t ≤ 40n log n, call proposal t a ‘seemingly-good’ proposal when acceptance by w′ ∈
W\(R(m) ∪ ŵ) occurs. Denote the set of seemingly good proposals by A. We use Lemma

B.14. For each proposal t, there is a probability at least 0.9n/t of it being a seemingly-good

proposal, conditioned on the history so far. Define independent Xt ∼ Bernoulli(0.9n/t) for

t = t0, t0 + 1 . . . , 40n log n, where t0 is the first proposal in Part III. Then we can set up a

coupling so that proposal t ∈ A whenever Xt = 1. Now

40n logn∑
t=4n logn

1/t ≥ (0.99) ln(10) ≥ 2.27 ,

⇒
40n logn∑
t=4n logn

E[Xt] ≥ 2n
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Using Fact E.1, we deduce that
40n logn∑
t=4n logn

Xt ≥ 7n/4

wvhp, implying

|A| ≥
40n logn∑
t=t0

Xt ≥ 7n/4 (5)

wvhp, since we know that t0 ≤ 4n log n wvhp using Lemmas B.6 and B.8.

We call a seemingly-good proposal t ≤ 40n log n a ‘good’ proposal if the following condi-

tions are satisfied:

• During the current phase, there is no proposal to a woman in V . In particular, there

are no IICs.

• The phase is a terminal phase that ends during Part IV.

We denote the set of good proposals by G ⊆ A. We now argue that

|SII| ≥ |G| , (6)

where SII is the set S at the end of Part IV. If w′ /∈ (S ∪ w̄), then w′ becomes part of S

at the end of the phase if the proposal is a good proposal. For each terminal phase, there

is exactly one good proposal to a woman in S ∪ w̄, which we think of as accounting for ŵ,

which also becomes a part of S. Thus, for every good proposal, one woman joins S during

Part IV, establishing Eq. (6).

Now consider any phase in Part IV that starts before the 40n log n-th proposal. Call such

a phase an early phase. Using Lemma B.14, the phase contains more than n0.32 proposals

with probability at most (1 − n−0.31)n
0.32 ≤ exp(−n0.01) ≤ 1/n2. But the total number of

early phases is no more than 40n log n. It follows that using a union bound that, wvhp, there

is no early phase that contains more n0.32 proposals.

Now, the probability of a phase containing fewer than n0.32 proposals, and containing a

proposal to a woman in V is at most n0.32 · 2n0.32/n ≤ n−0.35, since |V | ≤ n0.32 throughout

such a phase. Further, there are at most 40n log n ≤ n1.01 early phases. It follows, using Fact

E.1 (ii) on Binomial(n1.01, n−0.35), that the number of early phases containing a proposal to a

woman in V is, wvhp, no more than n0.67. It follows that, wvhp, no more than n0.67 ·n0.32 =
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n0.99 proposals occur in early phases containing a proposal to V . But all proposals in A\G
must occur in such phases. We deduce that, wvhp,

|A\G| ≤ n0.99 . (7)

Combining Eqs. (5) and (7), we deduce that |G| ≥ 3n/2 ≥ |W| wvhp. Plugging in

Eq. (6), we obtain |SII| ≥ |W| at the end of Part IV wvhp, which we interpret14 as “With

wvhp, our assumption that Part IV does not end with termination was incorrect. In other

words, Part IV ends with termination wvhp”.

Lemma B.16. The number of proposals in improvement phases and in IICs in Part IV is

no more than n0.99 wvhp.

Proof. In the proof of Lemma B.15, we in fact showed that whp in Part IV, the number of

proposals in phases that include a proposal to a woman in V is no more than n0.99. (Actually,

we showed this bound for ‘early’ phases, and also showed that wvhp, the algorithm terminates

with an early phase, so that all phases in Part IV are early phases). But improvement phases

and phases containing IICs must include a proposal to a woman in V . The result follows.

We now establish two claims that follow from elementary calculus.

Claim B.17. For large enough n and any k ≥ 1 we have k log(1 + n/k) ≥ (log n)/2.

Proof. We divide possible values of k into three ranges, and establish the bound for each

range.

First, suppose k ≤ 10 log n. Then log(1 + n/(10 log n)) ≥ log
√
n ≥ log n/2 for large

enough n. It follows that k log(1 + n/k) ≥ log n/2 since k ≥ 1.

Next, suppose k ∈ (10 log n, 10n]. Now log(1 +n/k) ≥ log(1 +n/(10n)) = log 1.1 ≥ 0.09.

The bound follows by multiplying with k ≥ 10 log n.

Finally, consider k > 10n. Now, n/k ≤ 1/10 leading to log(1 +n/k) ≥ n/k− (n/k)2/2 ≥
0.95n/k. It follows that k log(1 + n/k) ≥ 0.95n ≥ log n/2 for large enough n.

Claim B.18. For any n ≥ 1 and any k ≥ 1, we have (1+1/n) log(1+n) ≥ (1+k/n) log(1+

n/k) ≥ 1.

14Recall our initial assumption that Part IV does not end with termination. Finding that |S| ≥ n under

this assumption simply means that Part IV did, in fact, end with termination.
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Proof. Consider f : (0,∞)→ R defined by f(x) = (1 + 1/x) log(1 + x). Then

f ′(x) =
x− log(1 + x)

x2
> 0 ∀x > 0 ,

using log(1 + x) < x for all x > 0. It follows that for any x > 0, we have

f(x) ≥ lim
x→0

f(x) = 1,

using limx→0 log(1+x)/x = 1. The lower bound in the claim follows by plugging in x = n/k.

The upper bound follows by plugging in k = 1, since this maximizes n/k for fixed n.

Finally, using these lemmas and claims we give the proof of Theorem B.1.

Proof of Theorem B.1. Using Lemma A.4, we can calculate the sum of men’s rank of wives

by summing up the rank under the MOSM and the number of proposals made during im-

provement phases and IICs during the run of Algorithm 2. By Lemma B.8, B.13 and Lemma

B.16, the total number of proposals that occur in improvement phases and IICs (in Parts

II-IV) of Algorithm 2 is, wvhp, no more than (1 + n/k)(log(n))0.45 + 2n0.99. Using Lemma

A.4, we get that

Sum of men’s rank of wives(WOSM)− Sum of men’s rank of wives(MOSM)

≤ (1 + n/k)(log(n))0.45 + 2n0.99 (8)

But

Sum of men’s rank of wives(MOSM)

≥ 0.99(n+ k) log((n+ k)/k)

≥ max(0.49(1 + n/k) log n, 0.99n) (9)

wvhp, from Lemma B.6 (i), along with Claims B.17 and B.18. We deduce from Eqs. (8) and

(9) that

RMEN(WOSM)−RMEN(MOSM)

RMEN(MOSM)
≤ (log n)−0.55/0.49 + 2n−0.01/0.99 ≤ (log n)−0.4

wvhp, immediately implying Theorem B.1 (iii).

The only agents whose partner changes in going from the MOSM to the WOSM are the

ones who make or receive accepted proposals during improvement phases and IICs. But this
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number on each side of the market is, wvhp, no more than n/(2
√

log n) in Part II (Lemma

B.10), and no more than n0.99 each in Part III (Lemma B.13) and Part IV (Lemma B.16,

leading to a bound of n/(2
√

log n) + 2n0.99 ≤ n/
√

log n on the total number of agents with

multiple stable partners on each side of the market, establishing Theorem B.1 (ii).

By Lemma B.10, wvhp, the improvement in the sum of women’s rank of husbands in Part

II is at most n2/(2(log n)3/2). In Parts III and IV, wvhp there are at most 2n0.99 women

who obtain better husbands (since each such woman must have received a proposal during

an improvement phase or IIC; see above), and the rank improves by less than n for each of

these women, so the improvement in sum of ranks is less than 2n1.99. It follows that the total

improvement in sum of ranks is, wvhp, less than n2/(log n)3/2. On the other hand, using

Lemma B.6 (iii) and the upper bound in Claim B.18, we obtain that wvhp

Sum of women’s rank of husbands(MOSM) ≥ n2/(2 log n) .

Theorem B.1 (iv) follows.

Lemma B.6 (i) and (iii) with ε′ = ε/2, combined with Theorem B.1 (iii) and (iv) (estab-

lished above) yields Theorem B.1 (i).

C Many-to-one matching markets

This section discusses the extension of our results to many-to-one matching markets, in

which colleges are matched with more than one student. We consider many-to-one markets

in which colleges have a small capacity relative to the size of the market, each student has an

independent, uniformly random complete preference list over colleges, and each college has

responsive preferences (Roth, 1985) and an independent, uniformly random complete pref-

erence list over individual students. In Section 4.4, we presented computational experiments

demonstrating that imbalance in such markets again leads to a small core and allows the

short side to approximately “choose.” We now follow to describe how our theoretical results

can be extended.

Assume that each college has a constant number of seats q. Students are on the short side

of the market if there are fewer students than seats, and, symmetrically, colleges are on the

short side of the market if there are more students than seats. We denote the extreme stable
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matchings by SOSM (the student-optimal stable matching) and COSM (the college-optimal

stable matching). The students’ average rank of their colleges is defined as before. We define

the colleges’ rank of students to be the average rank of students assigned to the college.

We argue that the bounds on average rank stated in Theorem 2 will deteriorate by a factor

that depends on q,15 whereas Theorem 1 will hold as stated. Thus, with high probability,

the core will be small and the short side will “choose.”

Our proof can be extended as follows. First, using results from Roth and Sotomayor

(1989), one can decompose the many-to-one market into a one-to-one market as follows.

For each seat in a college, create an “agent” that ranks students according to that college’s

preferences. Students rank all seats according to their preferences for the corresponding

schools, and all students rank seats within a college in the same order (i.e., there is a “top”

seat and a “bottom” seat in each college). A matching is stable in the original market if

and only if there is a corresponding stable matching in the decomposed market. With this

decomposition, all our results from Appendix A extend to the many-to-one case, allowing us

to use our algorithms to calculate the extreme stable matchings via a sequence of proposals

by agents on the short side.

Next, the stochastic analysis can be extended to the many-to-one case as follows. Suppose

there are n colleges, each with q seats. First consider the case in which there are fewer than

qn students. The first part of the analysis is student-proposing DA, and we can bound

the number of proposals in this stage by considering q repetitions of the coupon collector’s

problem. The next steps in our proof follow with slight modifications, using the fact that

rejection chains have the same structure as in the one-to-one case. Whenever a seat rejects

a student, the student matched with the bottom seat in the college gets rejected, and that

bottom student in turn applies to a randomly drawn college that ranks the student uniformly

at random. A college will accept the student if the applying student is more preferred than

the q-th best student currently at the college and will reject that q-th best student if it

accepts the applying student. A phase (chain), initiated by a college c rejecting a student,

can terminate either with an application to a school that has not filled its seats, or with

a successful application to college c. Therefore, a phase consists of a series of proposals to

random colleges that in case of acceptance, always reject their lowest-ranked student. The

15That is, there is a similar upper bound on the average rank of partners for the short side of the market,

and there is a similar lower bound on the average rank for the long side of the market.
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main difference is that in order to calculate the acceptance probability, we need to calculate

the probability that a (randomly ranked) proposing student is better than the q-th best

proposal the college received (instead of being better than the best proposal the woman

received in the one-to-one case). Bounds on this probability will be affected by at most a

constant factor.

Similar arguments allow us to extend our proof to the case where there are more students

than seats. The first part of the analysis is college-proposing DA, and we can again bound

the number of proposals in this stage by considering the coupon collector’s problem. The

rest of our analysis, controlling rejection chains, is almost unchanged. Whenever a student

in a college rejects a seat, the seat accepts the student matched with the next lower seat at

the college, and so on until the bottom seat in the college is rejected. This seat proposes

to a randomly drawn student who ranks the college uniformly at random and accepts if she

prefers the college over her current match. A phase (chain) initiated by a student s rejecting

a seat can either terminate with an offer to an unmatched student, or with a successful offer

to student s. Overall, the analysis in this case will be almost identical to our original proof.

We note that these results do not imply that colleges cannot gain from manipulation

in unbalanced matching markets, as a college can potentially manipulate even if there is a

unique stable matching. Kojima and Pathak (2009) show that a college can manipulate only

if a rejection of one of the students assigned to that college triggers a rejection chain that

cycles back to the college. We therefore conjecture that when the imbalance is larger than

a college’s capacity, even colleges have a limited scope for manipulation, but this conjecture

does not directly follow from our analysis, which only establishes that the core is small.

D Average rank estimates

Table 1 in Section 4 includes values of the following function for each unbalanced market.

EST = EST(|M|, |W|) =


|W|
|M| log

( |W|
|W|−|M|

)
for |W| > |M|

|W|
/(

1 + |M|
|W| log

( |M|
|M|−|W|

))
for |W| < |M|

(10)

The definition of EST is based on Theorem 2, as justified by the following facts.

Remark D.1. Fix any ε > 0.
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• For the case |W| > |M|, Theorem 2 and its proof imply that, with high probability

(asymptotically in |M|), RMEN/EST ∈ (1− ε, 1 + ε) under all stable matches (including

the MOSM and WOSM). Note that the upper bound on RMEN is part of the statement

of Theorem 2, whereas the lower bound follows from the proof (though it is not part

of the statement). Hence, we think of EST as a heuristic estimate for RMEN in finite

markets with |W| > |M|.

• For the case |W| < |M|, Theorem 2 implies that, with high probability (asymptoti-

cally in |W|), RMEN/EST ≥ 1 − ε under all stable matches (including the MOSM and

WOSM). Hence, we think of EST as a heuristic lower bound for RMEN in finite markets

with |W| < |M|.

E Chernoff bounds

Fact E.1 Chernoff bounds (see Durrett (2010)). Let Xi ∈ {0, 1} be independent with P[Xi =

1] = θi for 1 ≤ i ≤ n. Let X =
∑n

i=1Xi and λ =
∑n

i=1 θi.

(i) Fix any δ ∈ (0, 1). Then

P(|X − λ| ≥ λδ) ≤ 2 exp{−δ2λ/3}. (11)

(ii) For any R ≥ 6λ, we have

P(X ≥ R) ≤ 2−R. (12)
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